scholarly journals Synergistic effects of halloysite nanotubes with metal and phosphorus additives on the optimal design of eco-friendly sandwich panels with maximum flame resistance and minimum weight

2021 ◽  
Vol 11 (1) ◽  
pp. 252-265
Author(s):  
Saeed Kamarian ◽  
Ruiwen Yu ◽  
Jung-il Song

Abstract The present work addresses the optimal design of sandwich panels made of flax fabric (FF)/vinyl ester (VE) composite face sheets and honeycomb VE core. The sandwich structures are first optimized in terms of flammability by obtaining the best combination of ammonium polyphosphate (APP), halloysite nanotube (HNT), and magnesium hydroxide (MH) as three flame retardants (FRs). Using the Taguchi method and horizontal burning test, it is shown that [6, 3, and 3%] and [1, 0.5, and 0%] are the optimal combinations of APP, HNT, and MH for the face sheets and core, respectively. Cone calorimeter test results indicate that the optimal FR combinations significantly decrease the mass lost rate (MLR), heat rate release (HRR), total smoke release (TSR), and maximum average release heat emission (MARHE). The FR sandwich structures are then geometrically optimized under compressive loads based on their weight. Different failure modes are considered as the design constraints of the optimization problem. Imperialist competitive algorithm (ICA), as a powerful meta-heuristic algorithm, is implemented to considerably reduce the computational cost of the optimization process. The results of this study show that proper combinations of FR additives can increase the flame retardancy while decreasing the weight of sandwich panels.

2017 ◽  
Vol 20 (5) ◽  
pp. 639-657 ◽  
Author(s):  
Wei Zhao ◽  
Zonghong Xie ◽  
Xiang Li ◽  
Xishan Yue ◽  
Junfeng Sun

Titanium honeycomb sandwich structures are gradually used in several newly developed aircrafts in China. During the manufacturing process and aircraft service life, low-velocity impacts from foreign objects (typically stones, tools and hails, etc.), would quite likely happen and could not be completely avoided. In order to evaluate the influence of low-velocity impact damage on titanium honeycomb sandwich structures, unidirectional in-plane compression tests on both intact and impact damaged sandwich panels were conducted to obtain their failure modes and compressive failure strength. Test results showed that the low-velocity impact damage could cause the change in failure modes and a 9% to 15% decrease in the compressive failure strength. Different impact energy levels showed a limited influence on the compressive failure strength. Numerical analysis was conducted to study the compression after impact behavior of titanium sandwich panels. Parametric finite element models that contained all the geometric and the structural details of honeycomb core cells, as well as the indentation and the crushed core region, were developed in the analysis. The numerical results successfully exhibited the failure process of the intact and impact damaged titanium sandwich panels subjected to unidirectional in-plane compression, similar to what observed in the tests. The predicted compressive failure strength also agreed very well with the test data.


2021 ◽  
pp. 002199832199073
Author(s):  
Quanjin Ma ◽  
MRM Rejab ◽  
JP Siregar ◽  
Zhongwei Guan

It is a challenging task to advance the excellent strength and structural performance of sandwich structures, while continuing to reduce the weight and cost parameters. Thousands of researchers have studied and developed the core structural innovation with periodical achievements. This review paper concentrates on the core structural trends and impact response of sandwich panels, which highlights the novel design concepts and impact failure modes. Three kinds of core structures have been classified, which are foam-core, two- and three-dimensional periodic cores. It is shown that the core structure of sandwich panels plays a vital role in structural performance and applications. Three common types of loading conditions have been considered, i.e. compression, projectile impact and three-point bending. Examples of novel core structures are further studied and summarised under corresponding impact loadings. Recent applications of sandwich structures are briefly concentrated on aerospace, automotive, marine and civil engineering areas. Furthermore, future research and development prospect of sandwich structures are suggested and predicted.


2015 ◽  
Vol 6 (4) ◽  
pp. 439-450 ◽  
Author(s):  
G. Labeas ◽  
Evangelos Ptochos

Purpose – The purpose of this paper is to present, the global behaviour of sandwich structures comprising cellular cores is predicted by finite element (FE) analysis. Two modelling approaches are investigated, providing different levels of accuracy; in both approaches, the sandwich structure is idealised as a layered stack with the skin modelled using shell elements; while the core is either modelled with fine detail using beam micro-elements representing the cell struts, or is modelled by three-dimensional solid elements after an appropriate core homogenisation. Design/methodology/approach – The applied homogenisation methodology, as well as the all important modelling issues are presented in detail. Experimental tests performed using a mass-drop testing machine are used for the successful validation of the simulation models. Findings – It was concluded that the core microscale models having detailed FE modelling of the core unit cells geometry with fine scale beam elements are suitable for the analysis of the core failure modes and the prediction of the basic core stiffness and strength properties. It was demonstrated that the homogenised core model provides significant advantages with respect to computing time and cost, although they require additional calculations in order to define the homogenised stress-strain curves. Research limitations/implications – Special microscale material tests are required for the determination of appropriate materials parameters of the core models, as steel selective laser melting (SLM) microstrut properties differ from the constitutive steel material ones, due to the core manufacturing SLM technique. Stress interactions were not taken into account in the homogenisation, as the applied core material model supports the introduction of independent stress-strain curves; however, the predicted load deflection results appeared to be very close to those obtained from the detailed core micromodels. Originality/value – The paper is original. The dynamic behaviour of conventional sandwich structures comprising conventional honeycomb type cores has been extensively studied, using simple mass-spring models, energy based models, as well as FE models. However, the response of sandwich panels with innovative SLM cellular cores has been limited. In the present paper, novel modelling approaches for the simulation of the structural response of sandwich panels having innovative open lattice cellular cores produced by SLM are investigated.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 118
Author(s):  
Feng Zhu ◽  
Runzhou Zhou ◽  
David J. Sypeck

In this work, a computational study was carried out to simulate crushing tests on lithium-ion vehicle battery modules. The tests were performed on commercial battery modules subject to wedge cutting at low speeds. Based on loading and boundary conditions in the tests, finite element (FE) models were developed using explicit FEA code LS-DYNA. The model predictions demonstrated a good agreement in terms of structural failure modes and force–displacement responses at both cell and module levels. The model was extended to study additional loading conditions such as indentation by a cylinder and a rectangular block. The effect of other module components such as the cover and cooling plates was analyzed, and the results have the potential for improving battery module safety design. Based on the detailed FE model, to reduce its computational cost, a simplified model was developed by representing the battery module with a homogeneous material law. Then, all three scenarios were simulated, and the results show that this simplified model can reasonably predict the short circuit initiation of the battery module.


Author(s):  
Jin-Fan Liu ◽  
Karim A. Abdel-Malek

Abstract A formulation of a graph problem for scheduling parallel computations of multibody dynamic analysis is presented. The complexity of scheduling parallel computations for a multibody dynamic analysis is studied. The problem of finding a shortest critical branch spanning tree is described and transformed to a minimum radius spanning tree, which is solved by an algorithm of polynomial complexity. The problems of shortest critical branch minimum weight spanning tree (SCBMWST) and the minimum weight shortest critical branch spanning tree (MWSCBST) are also presented. Both problems are shown to be NP-hard by proving that the bounded critical branch bounded weight spanning tree (BCBBWST) problem is NP-complete. It is also shown that the minimum computational cost spanning tree (MCCST) is at least as hard as SCBMWST or MWSCBST problems, hence itself an NP-hard problem. A heuristic approach to solving these problems is developed and implemented, and simulation results are discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yong Xiao ◽  
Yefa Hu ◽  
Jinguang Zhang ◽  
Chunsheng Song ◽  
Xiangyang Huang ◽  
...  

The aim of this paper was to investigate bending responses of sandwich panels with aluminium honeycomb core and carbon fibre-reinforced plastic (CFRP) skins used in electric vehicle body subjected to quasistatic bending. The typical load-displacement curves, failure modes, and energy absorption are studied. The effects of fibre direction, stacking sequence, layer thickness, and loading velocity on the crashworthiness characteristics are discussed. The finite element analysis (FEA) results are compared with experimental measurements. It is observed that there are good agreements between the FEA and experimental results. Numerical simulations and experiment predict that the honeycomb sandwich panels with ±30° and ±45° fibre direction, asymmetrical stacking sequence (45°/−45°/45°/−45°), thicker panels (0.2 mm∼0.4 mm), and smaller loading velocity (5 mm/min∼30 mm/min) have better crashworthiness performance. The FEA prediction is also helpful in understanding the initiation and propagation of cracks within the honeycomb sandwich panels.


2017 ◽  
Vol 52 (10) ◽  
pp. 1295-1303 ◽  
Author(s):  
Yijiao Xue ◽  
Mingxia Shen ◽  
Fengling Lu ◽  
Yongqin Han ◽  
Shaohua Zeng ◽  
...  

To improve the flame resistance of polystyrene, three kinds of organophilic heterionic montmorillonites (Na-montmorillonite, Ca-montmorillonite, and Fe-montmorillonite) reinforced polystyrene nanocomposites were prepared by melt dispersion method. The structure and composition of the organo montmorillonites were characterized by using X-ray diffraction and Fourier-transform infrared analysis. The adhesion between organo montmorillonites and polystyrene was investigated by scanning electron microscopy. The flame resistance and thermal stability of the polystyrene/organo montmorillonites were evaluated by cone calorimeter test and thermogravimetric analysis. The interlayer space of organo montmorillonites increased with the increase of the oxidation state of the cations. With the addition of organo montmorillonites, the peak values of all the flame resistance indexes of the polystyrene/organo montmorillonites nanocomposites decreased, among which the PHRR values have decreased the most, compared with those of polystyrene. Their corresponding test times have all been delayed following almost precisely the same trend. Therefore, their flame retardant ability come from their lamellated structures, their charring forming abilities, and the reducing power of Fe3+ in polystyrene/Fe-montmorillonite. Organo montmorillonites mainly act as a kind of intumescent flame retardants. The flame resistance of polystyrene/Na-montmorillonite nanocomposite was the best, and the polystyrene/Ca-montmorillonite came second, which is slightly better than that of polystyrene/Fe-montmorillonite.


2009 ◽  
Vol 70 (3) ◽  
pp. 416-425 ◽  
Author(s):  
Tongan Wang ◽  
Shan Li ◽  
Steven R. Nutt

1973 ◽  
Vol 40 (2) ◽  
pp. 595-599 ◽  
Author(s):  
M. Z. Cohn ◽  
S. R. Parimi

Optimal (minimum weight) solutions for plastic framed structures under shakedown conditions are found by linear programming. Designs that are optimal for two failure criteria (collapse under fixed loads and collapse under variable repeated loads) are then investigated. It is found that these designs are governed by the ratio of the specified factors defining the two failure criteria, i.e., for shakedown, λs and for collapse under fixed loading, λ. Below a certain value (λs/λ)min the optimal solution under fixed loading is also optimal for fixed and shakedown loading. Above a value (λs/λ)max the optimal design for variable loading is also optimal under the two loading conditions. For intermediate values of λs/λ the optimal design that simultaneously satisfies the two criteria is different from the optimal designs for each independent loading condition. An example illustrates the effect of λs/λ on the nature of the design solution.


Sign in / Sign up

Export Citation Format

Share Document