Completely green synthesis of silver nanoparticle decorated MWCNT and its antibacterial and catalytic properties

2016 ◽  
Vol 88 (1-2) ◽  
pp. 71-81 ◽  
Author(s):  
Sneha Mohan ◽  
Oluwatobi S. Oluwafemi ◽  
Sandile P. Songca ◽  
Didier Rouxel ◽  
Patrice Miska ◽  
...  

AbstractWe herein report a simple large scale green synthesis route for the synthesis of silver nanoparticle (Ag-NP) multi walled carbon nanotubes (MWCNTs) hybrid nanocomposite (Ag-MWCNTs). The as-synthesized hybrid nanocomposite were characterized using UV-Vis absorption spectroscopy, Fourier transform infra-red spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction analysis (XRD) and high resolution transmission electron microscopy (HR-TEM). Raman spectroscopy analysis showed an increase in the D/G ratio of Ag-MWCNTs hybrid nanocomposites when compare with that of functionalized MWCNTs (F-MWCNTs) attributed to the presence of Ag-NPs on the surface of the F-MWCNTs. The as-synthesized Ag-MWCNTs nanocomposites showed strong antibacterial efficacy against Escherichia coli compared to the Ag-NPs and MWCNTs. The catalytic potential of the Ag-MWCNTs hybrid nanocomposite was investigated for the first time by studying the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride at 299 K at various reaction times. The reaction follows first order kinetics with a rate constant of 5.18×10−1 s−1. It is believed that, the large scale synthesis of such hybrid nanocomposites via simple method using non-toxic reagent will not only enhance its antibacterial efficacy, durability and biocompatibility, it will also minimize its biotoxcity and environmental impacts.

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4660
Author(s):  
Zoltán Osváth ◽  
András Pálinkás ◽  
Gábor Piszter ◽  
György Molnár

Silver nanoparticles (Ag NPs) play important roles in the development of plasmonic applications. Combining these nanoparticles with graphene can yield hybrid materials with enhanced light–matter interaction. Here, we report a simple method for the synthesis of graphene–silver nanoparticle hybrids on highly oriented pyrolytic graphite (HOPG) substrates. We demonstrate by scanning tunneling microscopy and local tunneling spectroscopy measurements the electrostatic n-type doping of graphene by contact with silver. We show by UV-Vis reflectance investigations that the local surface plasmon resonance (LSPR) of Ag NPs partially covered with graphene is preserved for at least three months, i.e., three times longer than the LSPR of bare Ag NPs. The gradual loss of LSPR is due to the spontaneous sulfurization of non-covered Ag NPs, as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. We show that the Ag NPs completely sandwiched between graphene and HOPG do not sulfurize, even after one year.


2019 ◽  
Vol 5 (1) ◽  
pp. 97-106
Author(s):  
Rudi Budi Agung ◽  
Muhammad Nur ◽  
Didi Sukayadi

The Indonesian country which is famous for its tropical climate has now experienced a shift in two seasons (dry season and rainy season). This has an impact on cropping and harvesting systems among farmers. In large scale this is very influential considering that farmers in Indonesia are stilldependent on rainfall which results in soil moisture. Some types of plants that are very dependent on soil moisture will greatly require rainfall or water for growth and development. Through this research, researchers tried to make a prototype application for watering plants using ATMEGA328 microcontroller based soil moisture sensor. Development of application systems using the prototype method as a simple method which is the first step and can be developed again for large scale. The working principle of this prototype is simply that when soil moisture reaches a certainthreshold (above 56%) then the system will work by activating the watering system, if it is below 56% the system does not work or in other words soil moisture is considered sufficient for certain plant needs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1007
Author(s):  
Azam Ali ◽  
Mariyam Sattar ◽  
Fiaz Hussain ◽  
Muhammad Humble Khalid Tareen ◽  
Jiri Militky ◽  
...  

The versatile one-pot green synthesis of a highly concentrated and stable colloidal dispersion of silver nanoparticles (Ag NPs) was carried out using the self-assembled tannic acid without using any other hazardous chemicals. Tannic acid (Plant-based polyphenol) was used as a reducing and stabilizing agent for silver nitrate in a mild alkaline condition. The synthesized Ag NPs were characterized for their concentration, capping, size distribution, and shape. The experimental results confirmed the successful synthesis of nearly spherical and highly concentrated (2281 ppm) Ag NPs, capped with poly-tannic acid (Ag NPs-PTA). The average particle size of Ag NPs-PTA was found to be 9.90 ± 1.60 nm. The colloidal dispersion of synthesized nanoparticles was observed to be stable for more than 15 months in the ambient environment (25 °C, 65% relative humidity). The synthesized AgNPs-PTA showed an effective antimicrobial activity against Staphylococcus Aureus (ZOI 3.0 mM) and Escherichia coli (ZOI 3.5 mM). Ag NPs-PTA also exhibited enhanced catalytic properties. It reduces 4-nitrophenol into 4-aminophenol in the presence of NaBH4 with a normalized rate constant (Knor = K/m) of 615.04 mL·s−1·mg−1. For comparison, bare Ag NPs show catalytic activity with a normalized rate constant of 139.78 mL·s−1·mg−1. Furthermore, AgNPs-PTA were stable for more than 15 months under ambient conditions. The ultra-high catalytic and good antimicrobial properties can be attributed to the fine size and good aqueous stability of Ag NPs-PTA. The unique core-shell structure and ease of synthesis render the synthesized nanoparticles superior to others, with potential for large-scale applications, especially in the field of catalysis and medical.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susanna Gevorgyan ◽  
Robin Schubert ◽  
Mkrtich Yeranosyan ◽  
Lilit Gabrielyan ◽  
Armen Trchounian ◽  
...  

AbstractThe application of green synthesis in nanotechnology is growing day by day. It’s a safe and eco-friendly alternative to conventional methods. The current research aimed to study raw royal jelly’s potential in the green synthesis of silver nanoparticles and their antibacterial activity. Royal jelly served as a reducing and oxidizing agent in the green synthesis technology of colloidal silver nanoparticles. The UV–Vis maximum absorption at ~ 430 nm and fluorescence emission peaks at ~ 487 nm confirmed the presence of Ag NPs. Morphology and structural properties of Ag NPs and the effect of ultrasound studies revealed: (i) the formation of polydispersed and spherical particles with different sizes; (ii) size reduction and homogeneity increase by ultrasound treatment. Antibacterial activity of different concentrations of green synthesized Ag NPs has been assessed on Gram-negative S. typhimurium and Gram-positive S. aureus, revealing higher sensitivity on Gram-negative bacteria.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
June Sik Hwang ◽  
Jong-Eun Park ◽  
Gun Woo Kim ◽  
Hyeono Nam ◽  
Sangseok Yu ◽  
...  

AbstractAs silver nanowires (Ag NWs) are usually manufactured by chemical synthesis, a patterning process is needed to use them as functional devices. Pulsed laser ablation is a promising Ag NW patterning process because it is a simple and inexpensive procedure. However, this process has a disadvantage in that target materials are wasted owing to the subtractive nature of the process involving the removal of unnecessary materials, and large quantities of raw materials are required. In this study, we report a minimum-waste laser patterning process utilizing silver nanoparticle (Ag NP) debris obtained through laser ablation of Ag NWs in liquid media. Since the generated Ag NPs can be used for several applications, wastage of Ag NWs, which is inevitable in conventional laser patterning processes, is dramatically reduced. In addition, electrophoretic deposition of the recycled Ag NPs onto non-ablated Ag NWs allows easy fabrication of junction-enhanced Ag NWs from the deposited Ag NPs. The unique advantage of this method lies in using recycled Ag NPs as building materials, eliminating the additional cost of junction welding Ag NWs. These fabricated Ag NW substrates could be utilized as transparent heaters and stretchable TCEs, thereby validating the effectiveness of the proposed process.


2021 ◽  
Vol 271 ◽  
pp. 116295
Author(s):  
Hannan Safiyyah Tan Sian Hui Abdullah ◽  
Siti Nur Aqlili Riana Mohd Asseri ◽  
Wan Nurul Khursyiah Wan Mohamad ◽  
Su-Yin Kan ◽  
Alyza Azzura Azmi ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1184
Author(s):  
Maria Cantarella ◽  
Giuliana Impellizzeri ◽  
Alessandro Di Mauro ◽  
Vittorio Privitera ◽  
Sabrina Carola Carroccio

The immobilization of inorganic nanomaterials on polymeric substrates has been drawing a lot of attention in recent years owing to the extraordinary properties of the as-obtained materials. The hybrid materials, indeed, combine the benefits of the plastic matter such as flexibility, low-cost, mechanical stability and high durability, with them deriving from their inorganic counterparts. In particular, if the inorganic fillers are nanostructured photocatalysts, the originated hybrid systems will be able to utilize the energy delivered by light, catalysing chemical reactions in a sustainable pathway. Most importantly, since the nanofillers can be ad-hoc anchored to the macromolecular structure, their release in the environment will be prevented, thus overcoming one of the main restrictions that impedes their applications on a large scale. In this review, several typologies of hybrid photocatalytic nanomaterials, obtained by using both organic and inorganic semiconductors and realized with different synthetic protocols, were reported and discussed. In the first part of the manuscript, nanocomposites realized by simply blending the TiO2 or ZnO nanomaterials in thermoplastic polymeric matrices are illustrated. Subsequently, the atomic layer deposition (ALD) technique is presented as an excellent method to formulate polymeric nanocomposites. Successively, some examples of polyporphyrins hybrid systems containing graphene, acting as photocatalysts under visible light irradiation, are discussed. Lastly, photocatalytic polymeric nanosponges, with extraordinary adsorption properties, are shown. All the described materials were deeply characterized and their photocatalytic abilities were evaluated by the degradation of several organic water pollutants such as dyes, phenol, pesticides, drugs, and personal care products. The antibacterial performance was also evaluated for selected systems. The relevance of the obtained results is widely overviewed, opening the route for the application of such multifunctional photocatalytic hybrid materials in wastewater remediation.


Sign in / Sign up

Export Citation Format

Share Document