scholarly journals Discovery of N-methylpiperazinyl flavones as a novel class of compounds with therapeutic potential against Alzheimer’s disease: synthesis, binding affinity towards amyloid β oligomers (Aβo) and ability to disrupt Aβo-PrPC interactions

2019 ◽  
Vol 91 (7) ◽  
pp. 1107-1136 ◽  
Author(s):  
Ana M. Matos ◽  
Teresa Man ◽  
Imane Idrissi ◽  
Cleide C. Souza ◽  
Emma Mead ◽  
...  

Abstract With no currently available disease-modifying drugs, Alzheimer’s disease is the most common type of dementia affecting over 47 million people worldwide. In light of the most recent discoveries placing the cellular prion protein (PrPC) as a key player in amyloid β oligomer (Aβo)-induced neurodegeneration, we investigated whether the neuroprotective potential of nature-inspired flavonoids against Aβ-promoted toxicity would translate into the ability to disrupt PrPC-Aβo interactions. Hence, we synthesized a small library of flavones and studied their binding affinity towards Aβo by STD-NMR. C-glucosyl flavones exhibited improved binding affinity with morpholine, thiomorpholine or N-methylpiperazine rings attached to the flavone skeleton in ring B para position. Moreover, a N-methylpiperazinyl flavone displayed suitable physicochemical properties and optimal water solubility even without the sugar moiety, and a high interaction with Aβo involving the whole flavone core. Its C-glucosyl derivative, was, however, the best compound to inhibit PrPC-Aβo interactions in a dose-dependent manner, with 41 % of inhibition capacity at 10 μM. The potential of C-glucosyl flavones and their aglycones as protein-protein interaction inhibitors able to tackle PrPC-Aβo interactions is here presented for the first time, and supports this class of compounds as new prototypes for further development in the treatment of Alzheimer’s disease.

2020 ◽  
Vol 21 (19) ◽  
pp. 7273
Author(s):  
Elham Rezvani Boroujeni ◽  
Seyed Masoud Hosseini ◽  
Giulia Fani ◽  
Cristina Cecchi ◽  
Fabrizio Chiti

Alzheimer’s disease (AD) is the most prevalent form of dementia and soluble amyloid β (Aβ) oligomers are thought to play a critical role in AD pathogenesis. Cellular prion protein (PrPC) is a high-affinity receptor for Aβ oligomers and mediates some of their toxic effects. The N-terminal region of PrPC can interact with Aβ, particularly the region encompassing residues 95–110. In this study, we identified a soluble and unstructured prion-derived peptide (PrP107–120) that is external to this region of the sequence and was found to successfully reduce the mitochondrial impairment, intracellular ROS generation and cytosolic Ca2+ uptake induced by oligomeric Aβ42 ADDLs in neuroblastoma SH-SY5Y cells. PrP107–120 was also found to rescue SH-SY5Y cells from Aβ42 ADDL internalization. The peptide did not change the structure and aggregation pathway of Aβ42 ADDLs, did not show co-localization with Aβ42 ADDLs in the cells and showed a partial colocalization with the endogenous cellular PrPC. As a sequence region that is not involved in Aβ binding but in PrP self-recognition, the peptide was suggested to protect against the toxicity of Aβ42 oligomers by interfering with cellular PrPC and/or activating a signaling that protected the cells. These results strongly suggest that PrP107–120 has therapeutic potential for AD.


2018 ◽  
Vol 15 (6) ◽  
pp. 504-510 ◽  
Author(s):  
Sara Sanz-Blasco ◽  
Maria Calvo-Rodríguez ◽  
Erica Caballero ◽  
Monica Garcia-Durillo ◽  
Lucia Nunez ◽  
...  

Objectives: Epidemiological data suggest that non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD). Unfortunately, recent trials have failed in providing compelling evidence of neuroprotection. Discussion as to why NSAIDs effectivity is uncertain is ongoing. Possible explanations include the view that NSAIDs and other possible disease-modifying drugs should be provided before the patients develop symptoms of AD or cognitive decline. In addition, NSAID targets for neuroprotection are unclear. Both COX-dependent and independent mechanisms have been proposed, including γ-secretase that cleaves the amyloid precursor protein (APP) and yields amyloid β peptide (Aβ). Methods: We have proposed a neuroprotection mechanism for NSAIDs based on inhibition of mitochondrial Ca2+ overload. Aβ oligomers promote Ca2+ influx and mitochondrial Ca2+ overload leading to neuron cell death. Several non-specific NSAIDs including ibuprofen, sulindac, indomethacin and Rflurbiprofen depolarize mitochondria in the low µM range and prevent mitochondrial Ca2+ overload induced by Aβ oligomers and/or N-methyl-D-aspartate (NMDA). However, at larger concentrations, NSAIDs may collapse mitochondrial potential (ΔΨ) leading to cell death. Results: Accordingly, this mechanism may explain neuroprotection at low concentrations and damage at larger doses, thus providing clues on the failure of promising trials. Perhaps lower NSAID concentrations and/or alternative compounds with larger dynamic ranges should be considered for future trials to provide definitive evidence of neuroprotection against AD.


2021 ◽  
Vol 14 ◽  
Author(s):  
Siva Sundara Kumar Durairajan ◽  
Karthikeyan Selvarasu ◽  
Minu Rani Bera ◽  
Kaushik Rajaram ◽  
Ashok Iyaswamy ◽  
...  

: Alzheimer’s disease (AD), a major form of dementia, has been reported to affect more than 50 million people worldwide. It is characterized by the presence of amyloid-β (Aβ) plaques and hyperphosphorylated Tau-associated neurofibrillary tangles in the brain. Apart from AD, microtubule (MT)-associated protein Tau is also involved in other neurodegenerative diseases called tauopathies, including Pick’s disease, frontotemporal lobar degeneration, progressive supranuclear palsy, and corticobasal degeneration. The recently unsuccessful phase III clinical trials related to Aβ-targeted therapeutic drugs indicated that alternative targets, such as Tau, should be studied to discover more effective and safer drugs. Recent drug discovery approaches to reduce AD-related Tau pathologies are primarily based on blocking Tau aggregation, inhibiting Tau phosphorylation, compensating impaired Tau function with MT-stabilizing agents, and targeting the degradation pathways in neuronal cells to degrade Tau protein aggregates. Owing to several limitations of the currently-available Tau-directed drugs, further studies are required to generate further effective and safer Tau-based disease-modifying drugs. Here, we review the studies that focused on medicinal plant-derived compounds capable of modulating the Tau protein, which is significantly elevated and hyperphosphorylated in AD and other tauopathies. We mainly considered the studies that focused on Tau protein as a therapeutic target. We reviewed several pertinent papers retrieved from PubMed and ScienceDirect using relevant keywords, with a primary focus on the Tau-targeting compounds from medicinal plants. These compounds include indolines, phenolics, flavonoids, coumarins, alkaloids, and iridoids, which have been scientifically proven to be Tau-targeting candidates for the treatment of AD.


2021 ◽  
pp. 1-16
Author(s):  
Alessio Crestini ◽  
Francesca Santilli ◽  
Stefano Martellucci ◽  
Elena Carbone ◽  
Maurizio Sorice ◽  
...  

Specific protein misfolding and aggregation are mechanisms underlying various neurodegenerative diseases such as prion disease and Alzheimer’s disease (AD). The misfolded proteins are involved in prions, amyloid-β (Aβ), tau, and α-synuclein disorders; they share common structural, biological, and biochemical characteristics, as well as similar mechanisms of aggregation and self-propagation. Pathological features of AD include the appearance of plaques consisting of deposition of protein Aβ and neurofibrillary tangles formed by the hyperphosphorylated tau protein. Although it is not clear how protein aggregation leads to AD, we are learning that the cellular prion protein (PrPC) plays an important role in the pathogenesis of AD. Herein, we first examined the pathogenesis of prion and AD with a focus on the contribution of PrPC to the development of AD. We analyzed the mechanisms that lead to the formation of a high affinity bond between Aβ oligomers (AβOs) and PrPC. Also, we studied the role of PrPC as an AβO receptor that initiates an AβO-induced signal cascade involving mGluR5, Fyn, Pyk2, and eEF2K linking Aβ and tau pathologies, resulting in the death of neurons in the central nervous system. Finally, we have described how the PrPC-AβOs interaction can be used as a new potential therapeutic target for the treatment of PrPC-dependent AD.


Brain ◽  
2018 ◽  
Vol 142 (1) ◽  
pp. 176-192 ◽  
Author(s):  
Bing-Lin Zhu ◽  
Yan Long ◽  
Wei Luo ◽  
Zhen Yan ◽  
Yu-Jie Lai ◽  
...  

AbstractMMP13 (matrix metallopeptidase 13) plays a key role in bone metabolism and cancer development, but has no known functions in Alzheimer’s disease. In this study, we used high-throughput small molecule screening in SH-SY5Y cells that stably expressed a luciferase reporter gene driven by the BACE1 (β-site amyloid precursor protein cleaving enzyme 1) promoter, which included a portion of the 5′ untranslated region (5′UTR). We identified that CL82198, a selective inhibitor of MMP13, decreased BACE1 protein levels in cultured neuronal cells. This effect was dependent on PI3K (phosphatidylinositide 3-kinase) signalling, and was unrelated to BACE1 gene transcription and protein degradation. Further, we found that eukaryotic translation initiation factor 4B (eIF4B) played a key role, as the mutation of eIF4B at serine 422 (S422R) or deletion of the BACE1 5′UTR attenuated MMP13-mediated BACE1 regulation. In APPswe/PS1E9 mice, an animal model of Alzheimer’s disease, hippocampal Mmp13 knockdown or intraperitoneal CL82198 administration reduced BACE1 protein levels and the related amyloid-β precursor protein processing, amyloid-β load and eIF4B phosphorylation, whereas spatial and associative learning and memory performances were improved. Collectively, MMP13 inhibition/CL82198 treatment exhibited therapeutic potential for Alzheimer’s disease, via the translational regulation of BACE1.


2018 ◽  
Vol 19 (10) ◽  
pp. 3081 ◽  
Author(s):  
Daniela Sarnataro

The misfolding and aggregation of proteins is the neuropathological hallmark for numerous diseases including Alzheimer’s disease, Parkinson’s disease, and prion diseases. It is believed that misfolded and abnormal β-sheets forms of wild-type proteins are the vectors of these diseases by acting as seeds for the aggregation of endogenous proteins. Cellular prion protein (PrPC) is a glycosyl-phosphatidyl-inositol (GPI) anchored glycoprotein that is able to misfold to a pathogenic isoform PrPSc, the causative agent of prion diseases which present as sporadic, dominantly inherited and transmissible infectious disorders. Increasing evidence highlights the importance of prion-like seeding as a mechanism for pathological spread in Alzheimer’s disease and Tauopathy, as well as other neurodegenerative disorders. Here, we report the latest findings on the mechanisms controlling protein folding, focusing on the ER (Endoplasmic Reticulum) quality control of GPI-anchored proteins and describe the “prion-like” properties of amyloid-β and tau assemblies. Furthermore, we highlight the importance of pathogenic assemblies interaction with protein and lipid membrane components and their implications in both prion and Alzheimer’s diseases


2021 ◽  
Vol 12 ◽  
Author(s):  
Erin E. Sundermann ◽  
Kelsey R. Thomas ◽  
Katherine J. Bangen ◽  
Alexandra J. Weigand ◽  
Joel S. Eppig ◽  
...  

Although type 2 diabetes is a well-known risk factor for Alzheimer's disease (AD), little is known about how its precursor—prediabetes—impacts neuropsychological function and brain health. Thus, we examined the relationship between prediabetes and AD-related biological and cognitive/clinical markers in a well-characterized sample drawn from the Alzheimer's Disease Neuroimaging Initiative. Additionally, because women show higher rates of AD and generally more atherogenic lipid profiles than men, particularly in the context of diabetes, we examined whether sex moderates any observed associations. The total sample of 911 nondemented and non-diabetic participants [normal control = 540; mild cognitive impairment (MCI) = 371] included 391 prediabetic (fasting blood glucose: 100–125 mg/dL) and 520 normoglycemic individuals (age range: 55–91). Linear mixed effects models, adjusted for demographics and vascular and AD risk factors, examined the independent and interactive effects of prediabetes and sex on 2–6 year trajectories of FDG-PET measured cerebral metabolic glucose rate (CMRglu), hippocampal/intracranial volume ratio (HV/IV), cerebrospinal fluid phosphorylated tau-181/amyloid-β1−42 ratio (p-tau181/Aβ1−42), cognitive function (executive function, language, and episodic memory) and the development of dementia. Analyses were repeated in the MCI subsample. In the total sample, prediabetic status had an adverse effect on CMRglu across time regardless of sex, whereas prediabetes had an adverse effect on executive function across time in women only. Within the MCI subsample, prediabetic status was associated with lower CMRglu and poorer executive function and language performance across time within women, whereas these associations were not seen within men. In the total sample and MCI subsample, prediabetes did not relate to HV/IV, p-tau181/Aβ1−42, memory function or dementia risk regardless of sex; however, among incident dementia cases, prediabetic status related to earlier age of dementia onset in women but not in men. Results suggest that prediabetes may affect cognition through altered brain metabolism, and that women may be more vulnerable to the negative effects of glucose intolerance.


2018 ◽  
Author(s):  
Keiko Ishida ◽  
Masaki Yamamoto ◽  
Koichi Misawa ◽  
Noriyasu Ota ◽  
Akira Shimotoyodome

AbstractEpidemiological studies have found that habitual coffee consumption may reduce the risk of Alzheimer’s disease. Coffee contains numerous phenolic compounds (coffee polyphenols) such as chlorogenic acids. However, evidence demonstrating the contribution of chlorogenic acids in preventing cognitive dysfunction induced by Alzheimer’s disease is limited. In this study, we investigated the effect of chlorogenic acids on prevention of cognitive dysfunction in APP/PS2 transgenic mouse model of Alzheimer’s disease. Five-week-old APP/PS2 mice were administered a diet supplemented with coffee polyphenols daily for 5 months. The memory and cognitive function of mice was determined using the novel object recognition test, the Morris water maze test, and the step-through passive avoidance test. We found that chronic treatment with coffee polyphenols prevented cognitive dysfunction and significantly reduced hippocampal Aβ deposition. We then determined the effect of 5-caffeoylquinic acid, one of the primary components of coffee polyphenols, on Aβ formation. 5-Caffeoylquinic acid did not inhibit Aβ fibrillation, but degraded Aβ fibrils in a dose-dependent manner. In conclusion, these results demonstrate that coffee polyphenols prevented cognitive deficits and alleviated Aβ plaque deposition via disaggregation of Aβ in APP/PS2 mouse.


Brain ◽  
2020 ◽  
Author(s):  
Joana B Pereira ◽  
Shorena Janelidze ◽  
Rik Ossenkoppele ◽  
Hlin Kvartsberg ◽  
Ann Brinkmalm ◽  
...  

Abstract It is currently unclear how amyloid-β and tau deposition are linked to changes in synaptic function and axonal structure over the course of Alzheimer’s disease. Here, we assessed these relationships by measuring presynaptic (synaptosomal-associated protein 25, SNAP25; growth-associated protein 43, GAP43), postsynaptic (neurogranin, NRGN) and axonal (neurofilament light chain) markers in the CSF of individuals with varying levels of amyloid-β and tau pathology based on 18F-flutemetamol PET and 18F-flortaucipir PET. In addition, we explored the relationships between synaptic and axonal markers with cognition as well as functional and anatomical brain connectivity markers derived from resting-state functional MRI and diffusion tensor imaging. We found that the presynaptic and postsynaptic markers SNAP25, GAP43 and NRGN are elevated in early Alzheimer’s disease i.e. in amyloid-β-positive individuals without evidence of tau pathology. These markers were associated with greater amyloid-β pathology, worse memory and functional changes in the default mode network. In contrast, neurofilament light chain was abnormal in later disease stages, i.e. in individuals with both amyloid-β and tau pathology, and correlated with more tau and worse global cognition. Altogether, these findings support the hypothesis that amyloid-β and tau might have differential downstream effects on synaptic and axonal function in a stage-dependent manner, with amyloid-related synaptic changes occurring first, followed by tau-related axonal degeneration.


Gut ◽  
2022 ◽  
pp. gutjnl-2021-326269
Author(s):  
Chun Chen ◽  
Jianming Liao ◽  
Yiyuan Xia ◽  
Xia Liu ◽  
Rheinallt Jones ◽  
...  

ObjectiveThis study is to investigate the role of gut dysbiosis in triggering inflammation in the brain and its contribution to Alzheimer’s disease (AD) pathogenesis.DesignWe analysed the gut microbiota composition of 3×Tg mice in an age-dependent manner. We generated germ-free 3×Tg mice and recolonisation of germ-free 3×Tg mice with fecal samples from both patients with AD and age-matched healthy donors.ResultsMicrobial 16S rRNA sequencing revealed Bacteroides enrichment. We found a prominent reduction of cerebral amyloid-β plaques and neurofibrillary tangles pathology in germ-free 3×Tg mice as compared with specific-pathogen-free mice. And hippocampal RNAseq showed that inflammatory pathway and insulin/IGF-1 signalling in 3×Tg mice brain are aberrantly altered in the absence of gut microbiota. Poly-unsaturated fatty acid metabolites identified by metabolomic analysis, and their oxidative enzymes were selectively elevated, corresponding with microglia activation and inflammation. AD patients’ gut microbiome exacerbated AD pathologies in 3×Tg mice, associated with C/EBPβ/asparagine endopeptidase pathway activation and cognitive dysfunctions compared with healthy donors’ microbiota transplants.ConclusionsThese findings support that a complex gut microbiome is required for behavioural defects, microglia activation and AD pathologies, the gut microbiome contributes to pathologies in an AD mouse model and that dysbiosis of the human microbiome might be a risk factor for AD.


Sign in / Sign up

Export Citation Format

Share Document