Influence of the Support on the Morphology of Co-Sn, Ni-Sn, Co-Ni Nanoparticles Synthesized Through a Borohydride Reduction Method Applying a Template Technique

2018 ◽  
Vol 55 (1) ◽  
pp. 82-91
Author(s):  
I. N. Markova ◽  
M. B. Piskin ◽  
I. Z. Zahariev ◽  
E. Hristoforou ◽  
V. L. Milanova ◽  
...  

Abstract Intermetallic (Co-Sn, Ni-Sn, Co-Ni) nanoparticles have been synthesized through a borohydride reduction with NaBH4 in aqueous solutions of the chloride salts of Co, Ni, Sn at room temperature using a template technique with a carbon support. As a result nanocomposite materials have been obtained in situ. The ratio of the metallic components has been chosen according the phase diagrams of the relevant binary (Co-Sn, Ni-Sn, Co-Ni) systems: Co:Sn=35:65, Ni:Sn=45:55, Co:Ni=50:50. As carbon supports have been used graphite and carbon powder. To avoid the nanoparticle’s aggregation b-cyclodextrin has been added to the reaction solutions. To study the influence of the supports used on the morphology, specific surface area, elemental and phase composition of the synthesized intermetallic nanoparticles and their carbon nanocomposites SEM, EDS, BET, and XRD investigation techniques have been used. The particle’s morphology varies with the different supports, but in the all cases it is typical for alloyed materials. The nanoparticles are different in shape and size and exhibit a tendency to aggregate. The last-one is due to the unsaturated nanoparticle’s surface and the existing magnetic forces. Regardless of the elemental composition, the nanosized particles are characterized by a relatively high specific surface area (SSA). The Ni-Sn nanoparticle have the largest SSA (80 m2/g), while the Co-Sn particles have the lowest SSA (69 m2/g). The use of a carrier modifies the SSA of the resulting nanocomposites differently depending on the size and shape of the carrier’s particles. The studies conducted on the intermetallic nanoparticles synthesized with various carriers demonstrate that the particle’s morphology, size, and specific surface area for the different supports are suitable for use as catalysts, electrode materials in Li-ion batteries and as magnetic materials for biomedical applications.

2016 ◽  
Vol 18 (2) ◽  
pp. 141 ◽  
Author(s):  
A.A. Atchabarova ◽  
R.R. Tokpayev ◽  
A.T. Kabulov ◽  
S.V. Nechipurenko ◽  
R.A. Nurmanova ◽  
...  

<p>Electrode materials were prepared from activated carbonizates of walnut shell, apricot pits and shungite rock from “Bakyrchik” deposit, East Kazakhstan. Physicochemical characteristics of the obtained samples were studied by the Brunauer-Emett-Taylor method, scanning electron microscopy, Raman spectroscopy and other methods. Electrochemical properties of the obtained materials were studied by the method of cyclic voltammetry. It was found that the samples have an amorphous structure. Samples based on plant raw materials after hydrothermal carbonization at 240 °С during 24 h, have more homogeneous and developed surface. Specific surface area of carbon containing materials based on apricot pits is 1300 m<sup>2</sup>/g, for those on the based on mineral raw material, it is 153 m<sup>2</sup>/g. It was shown that materials after hydrothermal carbonization can be used for catalytic purposes and electrodes after thermal carbonization for analytical and electrocatalytic purposes. Electrode obtained by HTC have electrocatalytic activity. CSC 240 has high background current (slope i/Е is 43 mА V<sup>–1</sup> cm<sup>–2</sup>), low potential of the hydrogen electroreduction (more positive by ~ 0.5 V than samples based on plant raw materials). The reaction of DA determination is more pronounced on the electrodes obtained by HTC 240 °C, 24 h, due to the nature, carbon structure and high specific surface area of obtained samples.</p>


2019 ◽  
Vol 50 (5) ◽  
pp. 599-615
Author(s):  
Zhuanyong Zou ◽  
Xin Liu ◽  
Jiahui Ding ◽  
Tanqi Chen ◽  
Xungai Wang

Converting waste fiber to high value-added carbonaceous materials has been considered as an effective and affordable route in response to the increasing volume of waste fiber in recent year. In this study, we are the first to prepare activated carbon powder derived from cashmere guard hair as a renewable waste protein fiber, using a chemical activation method at different impregnation ratios of K2CO3/cashmere guard hair char and activation temperatures ranging from 400℃ to 600℃. Characterization of the activated carbon powder was carried out by morphology study, specific surface area study, and adsorption study. Results have shown that the increase of the impregnation ratio and the activation temperature created more microporous structure in the activated carbon powder, and then increased the specific surface area of the activated carbon powder as well as the amount of methylene blue adsorbed. However, the carbon yield increases with the increase in the impregnation ratio of K2CO3/cashmere guard hair char and decreases with the increase in the activation temperature. The activated carbon powder, activated by the condition of 1:2 K2CO3/cashmere guard hair char impregnation ratio and 600℃ activation temperature, has a specific surface area of 764.86 m2g−1 and a carbon yield of 14.07 wt%. Compared to the activated carbon powder derived from fine merino wool fibers, the activated carbon powder derived from cashmere guard hair has higher carbon yield, surface area, and total pore volume, showing a superior adsorption performance.


2014 ◽  
Vol 16 (46) ◽  
pp. 25609-25620 ◽  
Author(s):  
Yaovi Holade ◽  
Claudia Morais ◽  
Karine Servat ◽  
Teko W. Napporn ◽  
K. Boniface Kokoh

We report a convenient and straightforward thermal pre-treatment to improve the physicochemical properties of carbon-based substrates to boost the catalytic activity of platinum nanoparticles.


2018 ◽  
Vol 6 (30) ◽  
pp. 14644-14650 ◽  
Author(s):  
Shiyong Wang ◽  
Gang Wang ◽  
Tingting Wu ◽  
Yunqi Zhang ◽  
Fei Zhan ◽  
...  

BCN nanosheets show a pore structure with a high specific surface area and are investigated as CDI electrode materials for the first time.


2006 ◽  
Vol 301 ◽  
pp. 139-142 ◽  
Author(s):  
Hideyuki Morimoto ◽  
Kazuhiko Takeno ◽  
Yuuki Uozumi ◽  
Kenichi Sugimoto ◽  
Shinichi Tobishima

Composite electrode material of crystalline b-FeOOH and carbon was prepared by hydrolyzing of FeCl3 (aq.) in which carbon powder with various specific surface areas was dispersed. Composite electrode material of b-FeOOH fine particles and Ketjen black (KB:specific surface area 1270 m2 g-1) of high specific surface area exhibited the high capacity over 250 mAh g-1 per b-FeOOH weight and good cycle performances at rapid charge-discharge current density over 5 mA cm-2 (ca. 5.0 A g-1 per b-FeOOH weight) in nonaqueous electrolytes including lithium ions. Composite electrode materials of crystalline b-FeOOH and carbon are one of the promising candidates as electrode materials for energy storage devices that high-power operations are required.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1468 ◽  
Author(s):  
Yun Gu ◽  
Le-Qing Fan ◽  
Jian-Ling Huang ◽  
Cheng-Long Geng ◽  
Jian-Ming Lin ◽  
...  

Co@NiSe2 electrode materials were synthesized via a simple hydrothermal method by using nickel foam in situ as the backbone and subsequently characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and a specific surface area analyzer. Results show that the Co@NiSe2 electrode exhibits a nanowire structure and grows uniformly on the nickel foam base. These features make the electrode show a relatively high specific surface area and electrical conductivity, and thus exhibit excellent electrochemical performance. The obtained electrode has a high specific capacitance of 3167.6 F·g−1 at a current density of 1 A·g−1. To enlarge the potential window and increase the energy density, an asymmetric supercapacitor was assembled by using a Co@NiSe2 electrode and activated carbon acting as positive and negative electrodes, respectively. The prepared asymmetrical supercapacitor functions stably under the potential window of 0–1.6 V. The asymmetric supercapacitor can deliver a high energy density of 50.0 Wh·kg−1 at a power density of 779.0 W·kg−1. Moreover, the prepared asymmetric supercapacitor exhibits a good rate performance and cycle stability.


RSC Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 6856-6864 ◽  
Author(s):  
Kien-Cuong Pham ◽  
David S. McPhail ◽  
Andrew T. S. Wee ◽  
Daniel H. C. Chua

Deposition of amorphous molybdenum sulfide on a high specific surface area carbon support strongly enhanced the specific capacitance of the material.


Sign in / Sign up

Export Citation Format

Share Document