Threading Screw Dislocations in a Two-Phase Plate and a Two-Phase Sphere

2018 ◽  
Vol 55 (1) ◽  
pp. 102-116 ◽  
Author(s):  
A.L. Kolesnikova ◽  
M.Yu. Gutkin ◽  
A.E. Romanov

Abstract A screw dislocation perpendicular to free surfaces and an interface in a two-phase plate, and a screw dislocation piercing a two-phase hollow sphere are considered. The analytical solutions of the boundary-value problems have been found for the first time with the help of the virtual defects technique. Elastic fields of the screw dislocation in the plate are presented in the form of integrals with Bessel functions. Elastic fields of the screw dislocation in the hollow sphere have the form of series with Legendre polynomials. Stress distributions in both of the considered geometries are plotted. The influence of the geometric parameters of the considered solids and the ratio of the shear moduli on the stresses is analyzed. The interaction of a screw dislocation with a parallel edge dislocation is discussed.

2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Tebogo Mokgehle ◽  
Ntakadzeni Madala ◽  
Wilson Gitari ◽  
Nikita Tavengwa

AbstractSolanum plants (Solanaceae) are renowned source of nutraceuticals and have widely been explored for their phytochemical constituents. This work investigated the effects of kosmotropic and chaotropic salts on the number of phytochemicals extracted from the leaves of a nutraceutical plant, Solanum retroflexum, and analyzed on the ultra-performance liquid chromatography hyphenated to a quadrupole time of flight mass spectrometer (UPLC-QTOF-MS) detector. Here, a total of 20 different compounds were putatively characterized. The majority of the identified compounds were polyphenols and glycoalkaloids. Another compound, caffeoyl malate was identified for the first time in this plant. Glycoalkaloids such as solanelagnin, solamargine, solasonine, β-solanine (I) and β-solanine (II) were found to be extracted by almost all the salts used herein. Kosmotrope salts, overall, were more efficient in extracting polar compounds with 4 more polyphenolic compounds extracted compared to the chaotropes. Chaotropes were generally more selective for the extraction of less polar compounds (glycoalkaloids) with 3 more extracted than the kosmotropes. The chaotrope and the kosmotrope that extracted the most metabolites were NaCl and Na2SO4, respectively, with 12 metabolites extracted for each salt. This work demonstrated that a comprehensive metabolome of S. retroflexum, more than what was previously reported on the same plant, can be achieved by application of kosmotropes and chaotropes as extractants with the aid of the Aqueous Two Phase Extraction approach. The best-performing salts, Na2SO4 or NaCl, could potentially be applied on a commercial scale, to meet the ever-growing demand of the studied metabolites. The Aqueous Two Phase Extraction technique was found to be efficient in simultaneous extraction of multiple metabolites which can be applied in metabolomics.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1450
Author(s):  
Yuri Vassilevski ◽  
Alexey Liogky ◽  
Victoria Salamatova

Coaptation characteristics are crucial in an assessment of the competence of reconstructed aortic valves. Shell or membrane formulations can be used to model the valve cusps coaptation. In this paper we compare both formulations in terms of their coaptation characteristics for the first time. Our numerical thin shell model is based on a combination of the hyperelastic nodal forces method and the rotation-free finite elements. The shell model is verified on several popular benchmarks for thin-shell analysis. The relative error with respect to reference solutions does not exceed 1–2%. We apply our numerical shell and membrane formulations to model the closure of an idealized aortic valve varying hyperelasticity models and their shear moduli. The coaptation characteristics become almost insensitive to elastic potentials and sensitive to bending stiffness, which reduces the coaptation zone.


2009 ◽  
Vol 124 (5) ◽  
pp. 642-651 ◽  
Author(s):  
Nidhi Jain ◽  
James A. Singleton ◽  
Margrethe Montgomery ◽  
Benjamin Skalland

Since 1994, the Centers for Disease Control and Prevention has funded the National Immunization Survey (NIS), a large telephone survey used to estimate vaccination coverage of U.S. children aged 19–35 months. The NIS is a two-phase survey that obtains vaccination receipt information from a random-digit-dialed survey, designed to identify households with eligible children, followed by a provider record check, which obtains provider-reported vaccination histories for eligible children. In 2006, the survey was expanded for the first time to include a national sample of adolescents aged 13–17 years, called the NIS-Teen. This article summarizes the methodology used in the NIS-Teen. In 2008, the NIS-Teen was expanded to collect state-specific and national-level data to determine vaccination coverage estimates. This survey provides valuable information to guide immunization programs for adolescents.


1982 ◽  
Vol 53 (4) ◽  
pp. 3019-3023 ◽  
Author(s):  
S. N. G. Chu

2010 ◽  
Vol 25 (8) ◽  
pp. 1433-1440 ◽  
Author(s):  
Stephen J. Harris ◽  
Rutooj D. Deshpande ◽  
Yue Qi ◽  
Indrajit Dutta ◽  
Yang-Tse Cheng

Following earlier work of Huggins and Nix [Ionics6, 57 (2000)], several recent theoretical studies have used the shrinking core model to predict intraparticle Li concentration profiles and associated stress fields. A goal of such efforts is to understand and predict particle fracture, which is sometimes observed in degraded electrodes. In this paper we present experimental data on LiCoO2 and graphite active particles, consistent with previously published data, showing the presence of numerous internal pores or cracks in both positive and negative active electrode particles. New calculations presented here show that the presence of free surfaces, from even small internal cracks or pores, both quantitatively and qualitatively alters the internal stress distributions such that particles are prone to internal cracking rather than to the surface cracking that had been predicted previously. Thus, the fracture strength of particles depends largely on the internal microstructure of particles, about which little is known, rather than on the intrinsic mechanical properties of the particle materials. The validity of the shrinking core model for explaining either stress maps or transport is questioned for particles with internal structure, which includes most, if not all, secondary electrode particles.


2018 ◽  
Vol 20 (8) ◽  
pp. 1879-1886 ◽  
Author(s):  
Jun Cao ◽  
Luyao Chen ◽  
Mohan Li ◽  
Fuliang Cao ◽  
Linguo Zhao ◽  
...  

Two-phase systems developed with hydrophilic deep eutectic solvents (DESs) and hydrophobic DESs were prepared in this study for the first time.


2021 ◽  
pp. 1-25
Author(s):  
Yali Shao ◽  
Ramesh K. Agarwal ◽  
Xudong Wang ◽  
Baosheng Jin

Abstract In recent decades, increasing attention has been focused on accurate modeling of circulating fluidized bed (CFB) risers to provide valuable guidance to design, optimization and operation of reactors. Turbulence model plays an important role in accurate prediction of complex gas-solid flows. Recently developed Wray-Agarwal (WA) model is a one-equation turbulence model with the advantages of high computational efficiency and competitive accuracy with two-equation models. In this paper for the first time, Eulerian-Eulerian approach coupled with different turbulence models including WA model, standard κ-ε model and shear stress transport (SST) κ-ω model is employed to simulate two-phase flows of gas phase and solid phase in two CFB risers, in order to assess accuracy and efficiency of WA model compared to other well-known two-equation models. Predicted gas-solid flow dynamic characteristics including the gas-solid volume fraction distributions in radial and axial directions, pressure profiles and solid mass flux distributions are compared with data obtained from experiment in detail. The results demonstrate WA model is very promising for accurate and efficient simulation of gas-solid multiphase flows.


2012 ◽  
pp. 969-985
Author(s):  
Floriana Esposito ◽  
Teresa M.A. Basile ◽  
Nicola Di Mauro ◽  
Stefano Ferilli

One of the most important features of a mobile device concerns its flexibility and capability to adapt the functionality it provides to the users. However, the main problems of the systems present in literature are their incapability to identify user needs and, more importantly, the insufficient mappings of those needs to available resources/services. In this paper, we present a two-phase construction of the user model: firstly, an initial static user model is built for the user connecting to the system the first time. Then, the model is revised/adjusted by considering the information collected in the logs of the user interaction with the device/context in order to make the model more adequate to the evolving user’s interests/ preferences/behaviour. The initial model is built by exploiting the stereotype concept, its adjustment is performed exploiting machine learning techniques and particularly, sequence mining and pattern discovery strategies.


Sign in / Sign up

Export Citation Format

Share Document