scholarly journals Constructing better roads with asphalt rubber

2015 ◽  
Vol 4 (2) ◽  
pp. 23-52 ◽  
Author(s):  
Jorge C. Pais ◽  
Liseane P. Thives ◽  
Paulo A. A. Pereirâ ◽  
Glicério Trichês

Abstract Brazilians mixtures containing asphalt rubber were evaluated by mechanical laboratory tests. A conventional mixture with asphalt CAP-50/70 was produced as a mixture control. With the aim of compare the Brazilians mixtures performance, a Portuguese asphalt rubber mixture was tested as well. The testing set involved the determination of the mechanical properties, fatigue and permanent deformation, of asphalt rubber produced by wet process through two different systems: continuous blend and terminal blend. The asphalt rubber morphology was evaluated in order to determine the compatibility of the systems. The asphalt rubber mixtures exhibit good resistance to permanent deformation and prolonged fatigue life in relation to mixture control. Therefore it is concluded that the application of asphalt rubber alters the characteristics of asphalt mixture in a very beneficial way.

Since 1960 Using crumb rubber modifier (CRM) in hot asphalt mixtures has become a frequent practice in road construction. Using the CRM by the dry process method is not commonly used, although it has great advantages such as it is less fuel consuming and it does not require storage container like the wet process method. This research evaluates the mechanical properties of dense graded asphalt rubber mixtures manufactured using the dry process. The results obtained from this mixture compared with similar asphalt mixture without CRM. The mechanical properties of all mixtures evaluated using a set of tests such Marshall Stability and flow test, moisture susceptibility test, indirect tensile strength test, dynamic modulus and flow number test. The research results showed that using CRM with 0.75% of aggregate’s weight increased the mixture’s stability, flow and enhanced its cracking and permanent deformation resistance.


2010 ◽  
Vol 168-170 ◽  
pp. 1145-1148 ◽  
Author(s):  
Xin Qiu ◽  
Lan Yun Chen ◽  
Liang Xue

The paper investigates the effects of different concentrations of crumb rubber (CR) on the pavement performance of the conventional penetration-grade 80/100 bitumen and the dense-graded wearing course asphalt mixture (AC16). A wet process and 0.6mm size CR were used and the control variables included three types of CR of concentrations 5%,10% and 15% by total weight of binder. The evaluations were twofold. Firstly, a comparison of the basic and rheological properties of those modified and unmodified binders was conducted. Secondly, a comparison of the resistance to moisture damage, low temperature cracking and permanent deformation of the AC16 and CR modified AC16 was performed. The results show that all the CR modified binders and mixtures are found to have improved performance as evaluated by a series of laboratory tests. In addition, among three CR concentrations, AC16 modified with 10%CR by total weight of binder exhibits the most satisfactory performance properties with respect to the resistance to moisture damage, permanent deformation and low temperature cracking.


2013 ◽  
Vol 45 (1) ◽  
pp. 97-105 ◽  
Author(s):  
M.M. Dimitrijevic ◽  
M. Dojcinovic ◽  
A. Devecerski ◽  
R. Jancic-Heinemann ◽  
T. Volkov-Husovic

Alumina based specimens having different content of alumina based fibers were investigated for possible application as cavitation resistant material. Cavitation damages of the alumina based specimens were tested by the modified vibratory cavitation set up. Erosion rates were measured based on the method developed for metallic samples, mass loss was measured during the experiment. Surface erosion was determined during the experiment simultaneously to mass loss measurements. Image Pro Plus Program was applied for surface analysis during testing. Results indicate that investigated material exhibit excellent mechanical properties and very good resistance to cavitation erosion.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012078
Author(s):  
J Bokomlasko ◽  
J Mandula

Abstract Asphalt mixture is a building material with many advantages. Therefore, it is most used in road construction. If the asphalt mixture is laid with the prescribed technology, it can withstand load effects to long-term. It is necessary to take samples that will be subjected to laboratory measurements. There are several laboratory test, for example measurement thickness of the asphalt mixture layers, the aggregate fraction, quantity of binder in the mixture, determination of air void in asphalt mixture layers. Samples taken directly from the construction site are subjected to laboratory tests. This article focuses on one of the laboratory tests and it is determination of air void in asphalt mixture layers. The determination of air void in asphalt mixture layers is test in detail, because this effect has influence on the deformation properties of asphalt mixture layers. Therefore, it was necessary to model of air void in asphalt mixture layers with different degrees air void. On this purpose was use program Abaqus. The results were plotted. This graphs showed that increasing the air void in asphalt mixture layers has effect on the expansion of deformations. This can lead to faster pavement degradation.


2021 ◽  
Vol 2139 (1) ◽  
pp. 012016
Author(s):  
H Y Jaramillo ◽  
J A Gómez-Camperos ◽  
N Quintero-Quintero

Abstract This study aims to analyze the influence of the incorporation of crushed polyethylene terephthalate as a substitute for fine aggregate in percentages of 10%, 15%, and 20% for the elaboration of concrete blocks. The methodology used is experimental quantitative approach, where the influence of the addition of crushed polyethylene terephthalate as a substitute for fine aggregate for the elaboration of concrete blocks was analyzed to identify the variation in the physical and mechanical properties of samples elaborated under different substitutions and in this way compare with the Colombian standard procedures. The results found in this study indicated that the blocks with the different percentages of polyethylene terephthalate presented a good resistance compared to the block without polyethylene terephthalate, which presented a resistance of 8 MPa. The blocks with polyethylene terephthalate at 10%, 15%, and 20% presented an average resistance of 6.36 MPa, 3.58 MPa, and 4.63 MPa, respectively. Finally, it was analyzed that the blocks with 10% aggregate are waterproof with normal density. In comparison, the blocks with 15% and 20% polyethylene terephthalate have high permeability, with the ability to drain 1 liter of water in 105 s and 38 s, respectively.


2012 ◽  
Vol 598 ◽  
pp. 603-607 ◽  
Author(s):  
Lan Wang ◽  
Xiao Hui Meng ◽  
Li Qing Pan ◽  
Ji Quan Zhang

In order to evaluate the shear performance of the rubber powder modified asphalt mixture, we do the triaxial test of Asphalt-Rubber mixture at specified temperature, which use the United States GCTS STX-100 two-way vibration triaxial test system. Through the result of the test, we analysis the factors affecting the shear resistance of asphalt mixture such as modification agent,confining pressure, gradation type and also get the mechanical properties of the asphalt mixture in the triaxial stress state.


1998 ◽  
Vol 26 (4) ◽  
pp. 306
Author(s):  
DR Petersen ◽  
RE Link ◽  
DG Goulias ◽  
AH Ali

2014 ◽  
Vol 70 (4) ◽  
Author(s):  
Mohd Zul Hanif Mahmud ◽  
Haryati Yaacob ◽  
Ramadhansyah Putra Jaya ◽  
Norhidayah Abdul Hassan

This paper presents an investigation on the effects of flaky aggregates in asphalt mixture. In general, aggregate characteristics are critical to the performance of asphalt mixture. Therefore, flaky aggregate is normally avoided simply because it has significant contribution towards the gradation and reduces the interlocking characteristics of aggregates within asphalt mixture. In practice, it is recommended that the amount of flakiness aggregate should be limited to 25% or less. This study evaluates the mechanical properties of asphalt mixture specimens prepared with various percentages of flaky aggregates particularly 10%, 20% and 30% by the total weight of the mixture. Several laboratory tests were conducted including Marshall properties test, Indirect Tensile Modulus test and Dynamic Creep test. The results show that higher bitumen content is required with the increased in the amount of flaky aggregates added to mixture. Furthermore, greater amount of flaky aggregates tends to reduce the mixture’s resilient modulus and its resistance against permanent deformation.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yafei Li ◽  
Jing Chen ◽  
Jin Yan ◽  
Meng Guo

In order to study the effect of different rock asphalt contents on the physical and mechanical properties of an asphalt binder and asphalt mixture, the physical and mechanical tests and analysis were conducted. An on-site case was investigated to verify the effectiveness of rock asphalt-modified pavement. The results show that the activation treatment can effectively enhance the molecular polarity of Buton rock asphalt. The “wet process” was used to prepare the Buton rock asphalt-modified asphalt binder, and the high-temperature performance and aging resistance were significantly improved. The modified asphalt prepared by mixing 30% rock asphalt shows the optimum balance between service performance and segregation. The on-site full-scale application of the Buton rock asphalt-modified asphalt pavement showed the good workability and service performance. This research demonstrated the ability of rock asphalt improving asphalt pavement on multiscales. It is helpful for the broader application of rock asphalt in asphalt pavement.


2008 ◽  
Vol 35 (10) ◽  
pp. 1114-1119 ◽  
Author(s):  
Shu Wei Goh ◽  
Zhanping You

This paper shows a preliminary study of asphalt mixtures containing bottom ash with a primary focus on the permanent deformation. The objectives of this study are (i) perform literature reviews on the mechanical properties of asphalt mixtures containing bottom ash; (ii) evaluate the effects of using bottom ash as the mineral filler for the asphalt mixture through the flow number and dynamic modulus tests; and (iii) use the test results to evaluate the pavement permanent deformation using the Mechanistic–empirical pavement design guide (MEPDG) analysis. It was found that the asphalt mixture using bottom ash uses higher asphalt content due to the higher absorption. The replacement with bottom ash in the asphalt mixture generates a lower dynamic modulus as compared to the control mixtures. Additionally, results from MEPDG analysis show mixtures with bottom ash have higher rutting potential.


Sign in / Sign up

Export Citation Format

Share Document