scholarly journals Solvent selection for fatty acid residue analysis of archeologicial artifacts

2017 ◽  
Vol 3 (1) ◽  
pp. 1-10
Author(s):  
Jeffrey J. Rosentreter ◽  
John Malamakal ◽  
Kelli Barnes ◽  
Matt Alexander

AbstractResidue analysis has rapidly become one of the most useful techniques for determining an artifact function and revealing insight into paleodiets. The success of analytical residue analysis often lies with the first preparatory step, where the residue is extracted from the object. Detection of a residue requires effective solvation of the material, and there is a large range of potential solvents. One purpose of this study is to determine the efficiency of various solvents for the extraction of fatty acids from charcoal, a material that is ubiquitous, easily identified, remarkably stable in the archaeological record but, most importantly for this research, retains fats extremely well. This investigation examines the removal efficiency of model fatty acids from carbonized wood samples. The strong affinity of lipids to charcoal makes carbonized wood ideal for retaining them, but also makes their extraction extremely challenging and thus an ideal benchmark for solvent extraction characterization. Several solvents (benzene, chloroform, hexane, methanol and water) are used to determine the quantitative extraction efficiency of tripalmitin. While benzene and chloroform perform best for some wood types, neither solvent is better for all carbonized wood. Correlations between the chemical properties of the solvents and the effectiveness of the extraction provide guidance for solvents. Findings indicate solvent characteristics including dipole moment, dielectric constant, hydrogen bonding, and molecular weight all play an important role in extraction of fat from a charcoal matrix. Results presented should provide guidelines to allow for more effective residue extration and more accurate lipid analysis.

2021 ◽  
Vol 22 (6) ◽  
pp. 2798
Author(s):  
Zoran Todorović ◽  
Siniša Đurašević ◽  
Maja Stojković ◽  
Ilijana Grigorov ◽  
Slađan Pavlović ◽  
...  

Lipids play an essential role in both tissue protection and damage. Tissue ischemia creates anaerobic conditions in which enzyme inactivation occurs, and reperfusion can initiate oxidative stress that leads to harmful changes in membrane lipids, the formation of aldehydes, and chain damage until cell death. The critical event in such a series of harmful events in the cell is the unwanted accumulation of fatty acids that leads to lipotoxicity. Lipid analysis provides additional insight into the pathogenesis of ischemia/reperfusion (I/R) disorders and reveals new targets for drug action. The profile of changes in the composition of fatty acids in the cell, as well as the time course of these changes, indicate both the mechanism of damage and new therapeutic possibilities. A therapeutic approach to reperfusion lipotoxicity involves attenuation of fatty acids overload, i.e., their transport to adipose tissue and/or inhibition of the adverse effects of fatty acids on cell damage and death. The latter option involves using PPAR agonists and drugs that modulate the transport of fatty acids via carnitine into the interior of the mitochondria or the redirection of long-chain fatty acids to peroxisomes.


2017 ◽  
Vol 36 (1) ◽  
pp. 14-26 ◽  
Author(s):  
Sanne A. M. Rijkhoff ◽  
Season A. Hoard ◽  
Michael J. Gaffney ◽  
Paul M. Smith

Although much of the social science literature supports the importance of community assets for success in many policy areas, these assets are often overlooked when selecting communities for new infrastructure facilities. Extensive collaboration is crucial for the success of environmental and economic projects, yet it often is not adequately addressed when making siting decisions for new projects. This article develops a social asset framework that includes social, creative, and human capital to inform site-selection decisions. This framework is applied to the Northwest Advanced Renewables Alliance project to assess community suitability for biofuel-related developments. This framework is the first to take all necessary community assets into account, providing insight into successful site selection beyond current models. The framework not only serves as a model for future biorefinery projects but also guides tasks that depend on informed location selection for success.


2021 ◽  
Vol 13 (3) ◽  
Author(s):  
J. Dunne ◽  
E. Biddulph ◽  
P. Manix ◽  
T. Gillard ◽  
H. Whelton ◽  
...  

AbstractFood is often one of the most distinctive expressions of social, religious, cultural or ethnic groups. However, the archaeological identification of specific religious dietary practices, including the Jewish tradition of keeping kosher, associated with ritual food practices and taboos, is very rare. This is arguably one of the oldest known diets across the world and, for an observant Jew, maintaining dietary laws (known as Kashruth) is a fundamental part of everyday life. Recent excavations in the early medieval Oxford Jewish quarter yielded a remarkable assemblage of animal bones, marked by a complete absence of pig specimens and a dominance of kosher (permitted) birds, domestic fowl and goose. To our knowledge, this is the first identification of a Jewish dietary signature in British zooarchaeology, which contrasted markedly with the previous Saxon phase where pig bones were present in quantity and bird bones were barely seen. Lipid residue analysis of pottery from St Aldates showed that vessels from the possible Jewish houses were solely used to process ruminant carcass products, with an avoidance of pig product processing, correlating well with the faunal data. In contrast, lipid analysis of pottery from comparative assemblages from the previous Saxon phase at the site and a contemporaneous site in the city, The Queen’s College, shows that the majority of these vessels appear to have been used to process mixtures of both ruminant and non-ruminant (pig) products. Here, the combination of organic residue analysis, site excavation and animal and fish bone evidence was consistent with the presence of Jewish houses in eleventh- and twelfth-century St Aldates, Oxford, hitherto only suspected through documentary information. This is the first identification of specific religious dietary practices using lipid residue analysis, verifying that, at least 800 years ago, medieval Jewish Oxford communities practised dietary laws known as Kashruth.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1219
Author(s):  
Marek Bunse ◽  
Peter Lorenz ◽  
Florian C. Stintzing ◽  
Dietmar R. Kammerer

The present study aimed at the identification and quantitation of phenolic compounds, fatty acids, and further characteristic substances in the seeds of Geum urbanum L. and Geum rivale L. For this purpose, individual components of extracts recovered with MeOH, CH2Cl2, and by cold-pressing, respectively, were characterized by HPLC-DAD/ESI-MSn and GC/MS and compared with reference compounds. For both Geum species, phenolic compounds, such as flavonoids and gallic acid derivatives, and triterpenes, such as saponins and their aglycones, were detected. Surprisingly, both Geum species revealed the presence of derivatives of the triterpenoid aglycons asiatic acid and madecassic acid, which were characterized for the first time in the genus Geum. Furthermore, the fatty acids of both species were characterized by GC–MS after derivatization. Both species showed a promising fatty-acid profile in terms of nutritional properties because of high proportions of unsaturated fatty acids. Linoleic acid and linolenic acid were most abundant, among other compounds such as palmitic acid and stearic acid. In summary, the present study demonstrates the seeds of G. urbanum and G. rivale to be a valuable source of unsaturated fatty acids and bioactive phenolics, which might be exploited for nutritional and cosmetic products and for phytotherapeutic purposes.


Author(s):  
Yuanyuan Jiang ◽  
Wei Peng ◽  
Zhong Li ◽  
Cai You ◽  
Yue Zhao ◽  
...  

2006 ◽  
Vol 282 (7) ◽  
pp. 4613-4625 ◽  
Author(s):  
Markus Fritz ◽  
Heiko Lokstein ◽  
Dieter Hackenberg ◽  
Ruth Welti ◽  
Mary Roth ◽  
...  

Plastidial glycolipids contain diacylglycerol (DAG) moieties, which are either synthesized in the plastids (prokaryotic lipids) or originate in the extraplastidial compartment (eukaryotic lipids) necessitating their transfer into plastids. In contrast, the only phospholipid in plastids, phosphatidylglycerol (PG), contains exclusively prokaryotic DAG backbones. PG contributes in several ways to the functions of chloroplasts, but it is not known to what extent its prokaryotic nature is required to fulfill these tasks. As a first step toward answering this question, we produced transgenic tobacco plants that contain eukaryotic PG in thylakoids. This was achieved by targeting a bacterial DAG kinase into chloroplasts in which the heterologous enzyme was also incorporated into the envelope fraction. From lipid analysis we conclude that the DAG kinase phosphorylated eukaryotic DAG forming phosphatidic acid, which was converted into PG. This resulted in PG with 2–3 times more eukaryotic than prokaryotic DAG backbones. In the newly formed PG the unique Δ3-trans-double bond, normally confined to 3-trans-hexadecenoic acid, was also found in sn-2-bound cis-unsaturated C18 fatty acids. In addition, a lipidomics technique allowed the characterization of phosphatidic acid, which is assumed to be derived from eukaryotic DAG precursors in the chloroplasts of the transgenic plants. The differences in lipid composition had only minor effects on measured functions of the photosynthetic apparatus, whereas the most obvious phenotype was a significant reduction in growth.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 201 ◽  
Author(s):  
Cristina Padula ◽  
Silvia Pescina ◽  
Sara Nicoli ◽  
Patrizia Santi

Buccal mucosa has recently received much attention as a potential route for systemic delivery of drugs, including biologics and vaccines. The aim of this work was to gain insight into the mechanism of fatty acids as buccal permeation enhancers, by studying the effect of a series of medium and long chain fatty acids on the permeation of a model high molecular weight and hydrophilic molecule, fluorescein isothiocyanate labelled dextran (FD-4, m.w. 4 kDa) across porcine esophageal epithelium. A parabolic relationship between fatty acid lipophilicity and enhancement was obtained, regardless of the presence and number of double bonds. The relationship, which resembles the well-known relationship between permeability and lipophilicity of transdermal delivery, presents a maximum value in correspondence of C10 (logP approx. 4). This is probably the ideal lipophilicity for the fatty acid to interact with the lipid domains of the mucosa. When the same analysis was performed on skin data, the same trend was observed, although the maximum value was reached for C12 (logP approx. 5), in agreement with the higher lipophilicity of the skin. The results obtained in the present work represent a significant advancement in the understanding of the mechanisms of action of fatty acids as buccal penetration enhancers.


2013 ◽  
Vol 53 (2) ◽  
pp. 129 ◽  
Author(s):  
M. J. Kelly ◽  
R. K. Tume ◽  
S. Newman ◽  
J. M. Thompson

Genetic parameters were estimated for fatty acid composition of subcutaneous beef fat of 1573 animals which were the progeny of 157 sires across seven breeds grown out on pasture and then finished on either grain or grass in northern New South Wales or in central Queensland. There was genetic variation in individual fatty acids with estimates of heritability for the proportions of C14 : 0, C14 : 1c9, C16 : 0, C16 : 1c9, C18 : 0 and C18 : 1c9 fatty acids in subcutaneous beef fat of the order of 0.4 or above. Also substantial correlations between some fatty acids were observed. Genetic correlations between fatty acids and fat depth at the P8 site suggested that much of the genetic variation in fatty acid composition was related to changes in fatness. Selection for decreased fatness resulted in decreased proportions of C18 : 1c9 with concomitant increases in C18 : 0, C14 : 0 and C16 : 0. This suggested that selection for decreased fatness at a given weight will result in a decrease in the proportions of monounsaturated fatty acids in the subcutaneous fat in the carcass with a corresponding increase in the proportions of saturated fatty acids.


Sign in / Sign up

Export Citation Format

Share Document