scholarly journals Synthesis and mechanical properties of nano-Sb2O3/BPS-PP composites

2020 ◽  
Vol 27 (1) ◽  
pp. 139-147
Author(s):  
Jianlin Xu ◽  
Jinqiang Zhao ◽  
Chenghu Kang ◽  
Lei Niu ◽  
Jianbin Zhang ◽  
...  

AbstractIn view of the limitation of wide application of polypropylene(PP) with low strength, poor low-temperature brittleness and easy combustion, a kind of PP matrix nanocomposites was designed and prepared. Sb2O3 nanoparticles (nano-Sb2O3) modified by silane coupling agent of KH550 were dispersed into brominated polystyrene(BPS)-PP matrix by ball milling dispersion and melt blending method, respectively. And the nano-Sb2O3/BPS-PP composites samples were obtained by injection molding method. The effects of nano-Sb2O3 particles on mechanical properties of nano-Sb2O3/BPS-PP composites were investigated. The results showed that the surface of nano-Sb2O3 particles was successfully modified by the KH550 and the interfacial adhesion between nano-Sb2O3 and PP matrix was improved. With increasing of the mass fraction of nano-Sb2O3, the tensile strength and impact strength of nano-Sb2O3/BPS-PP composites were improved accompanying by increasing of crystallinity and refining grain of the composites. When the mass fraction of nano-Sb2O3 was 3 wt%, the tensile strength of nano-Sb2O3/BPS-PP composites was 43 MPa, which was 30.3% higher than that of PP. When the mass fraction of nano-Sb2O3 was 2 wt%, the impact strength of the composites was 44.19 kJ·m−2, which was 30.8% higher than that of PP.

2019 ◽  
Vol 26 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Guangye Xu ◽  
Yingshui Yu ◽  
Yubo Zhang ◽  
Tingju Li ◽  
Tongmin Wang

Abstract Reinforcement particle size is very important for the performance of metal ceramic composites. This work studied the influence of B4C particle size on the mechanical properties of Al matrix layered composites. These composites were fabricated using a simplified semicontinuous casting and hot-rolling process. To obtain an optimized filling structure of particles, Horsfield filling principle was applied to determine the size and mass fraction of B4C particles. Four sizes of B4C particles were used with various combinations. The results showed that with the increase of the B4C particle size and fine B4C mass fraction, the hardness of the composites decreases whereas the impact strength and ultimate tensile strength increase. The residual stress at interface should be responsible for the variation in properties. Besides, the interparticle distance also contributes to the change in impact strength and ultimate tensile strength.


Author(s):  
Sergey Savotchenko ◽  
Ekaterina Kovaleva

We study experimentally the influence of mass fraction of L-20 hardener cold cure on mechanical properties of epoxy diane resin ED-20. We measure the hardness, tensile strength, bending strength and impact strength of resin at different values of the hardener mass fraction. It is found that the ratio hardener mass fraction of 1:0.9 leads to the highest values of the hardness, tensile strength, compressive strength and bending strength. The impact viscosity is maximum at the ratio hardener mass fraction of 1:0.8. The optimal ratio of a non-toxic safe hardener to the resin is derived based on obtained mechanical characteristics.


1998 ◽  
Vol 520 ◽  
Author(s):  
Y. H. Zhang ◽  
K. C. Gong

ABSTRACTHybrids of quaternary ammonium-modified montmorillonites and polypropylene were prepared by melting intercalation. Results of mechanical property measurements show that, tensile strength, modulus and impact strength of PP composites are greatly enhanced simultaneously by a small addition amount of modified montmorillonites.


2021 ◽  
Vol 4 ◽  
pp. 121-126
Author(s):  
Rezza Ruzuqi ◽  
Victor Danny Waas

Composite material is a material that has a multi-phase system composed of reinforcing materials and matrix materials. Causes the composite materials to have advantages in various ways such as low density, high mechanical properties, performance comparable to metal, corrosion resistance, and easy to fabricate. In the marine and fisheries industry, composite materials made from fiber reinforcement, especially fiberglass, have proven to be very special and popular in boat construction because they have the advantage of being chemically inert (both applied in general and marine environments), light, strong, easy to print, and price competitiveness. Thus in this study, tensile and impact methods were used to determine the mechanical properties of fiberglass polymer composite materials. Each test is carried out on variations in the amount of fiberglass laminate CSM 300, CSM 450 and WR 600 and variations in weight percentage 99.5% -0.5%, 99% -1%, 98.5% -1, 5%, 98% -2% and 97.5%-2.5% have been used. The results showed that the greater the number of laminates, the greater the impact strength, which was 413,712 MPa, and the more the percentage of hardener, the greater the impact strength, which was 416,487 MPa. The results showed that the more laminate the tensile strength increased, which was 87.054 MPa, and the more the percentage of hardener, the lower the tensile strength, which was 73.921 MPa.


2019 ◽  
Vol 956 ◽  
pp. 229-236
Author(s):  
Jian Lin Xu ◽  
Zhou Chen ◽  
Lei Niu ◽  
Cheng Hu Kang ◽  
Xiao Qi Liu

In this paper, Sb2O3/PP composite specimens were prepared by ball milling and melt blending. The effects of Sb2O3 particle size and filling amount on the toughening, reinforcing effect and crystallinity of PP composites were analyzed by notch impact test, tensile test, SEM, XRD and DSC characterization. The experimental results show that the filling of Sb2O3 particles can improve the mechanical properties and crystallization properties of Sb2O3/PP composites. With the increase of filling amount of Sb2O3 particles, the tensile strength and impact strength of Sb2O3/PP composite increased first and then decreased. When the content of Sb2O3 is 2 wt.%, the tensile strength and impact strength of Sb2O3/PP composites reach the maximum. When the filling amount is the same, the crystallization and mechanical properties of nanoSb2O3/PP composites are better than those of micron Sb2O3/PP composites.


2011 ◽  
Vol 236-238 ◽  
pp. 1725-1730 ◽  
Author(s):  
Wei Jen Chen ◽  
Ming Yuan Shen ◽  
Yi Luen Li ◽  
Chin Lung Chiang ◽  
Ming Chuen Yip

This study used carbon aerogels (CA) and phenolic resin in fixed proportations to produce nano high polymer resin, and used poly ehtylene oxide (PEO) as the modifying agent for phenolic resin to improve the mechanical properties of phenolic resin and promote the surface conductivity. The prepared nano high polymer resin and carbon cloth were made into nano-prepreg by using ultrasonic impregnation method, and a nano-prepreg composite material was prepared by using hot compacting and cut to test pieces to measure its mechanical properties and surface conductivity as well as the influence of temperature-humidity environment (85°C/168hr and 85°C/85%RH/168hr) on mechanical properties. The result showed that the surface conductivity increased by 64.55%, the tensile strength at room temperature increased by 35.7%, the flexural strength increased by 18.4%, and the impact strength increased by 101%. In hot environment (85°C/168hr), the tensile strength decreased by 23.8%, the flexural strength increased by 3.1%, and the impact strength increased by 84.6%. In high temperature-high humidity environment (85°C/85% RH/168hr), the tensile strength decreased by 29.6%, the flexural strength decreased by 17%, and the impact strength increased by 95.7%.Introduction


2021 ◽  
Vol 10 (1) ◽  
pp. 1-7
Author(s):  
Rohit Kumar ◽  
Ramratan . ◽  
Anupam Kumar ◽  
Rajinder Singh Smagh

Elephant dung is an excellent source of cellulosic fiber that is a basic requirement for paper making. But they contributed to very small percentage production of elephant dung. So, researchers are trying to find a new area of utilization of elephant dung fiber pulp as in reinforcement’s polymer composite. In this experiment element dung fiber pulp in the natural fiber component chemically treated with alkaline and soda AQ solution in this study, it has been aimed to use elephant dung fiber pulp in composite material and to study mechanical properties of the produced material. The produced composite samples were then characterized using tensile test, Izod impact test, thickness test. The fracture surface of the polymer composite sample was also inspected with the help of SEM. The content of elephant dung fiber pulp is varied (35%, 45%, 55%) weight percentage whereas the epoxy resin is varied (50%, 40%, 30%) percentage is kept constant 15% in hardener. The entire sample has been tested in a universal testing machine as per ASTM standard for tensile strength and impact strength. It is observed that composite with 35% fiber pulp is having the highest tensile strength of 4mm 6.445 Mpa and 8mm 11.80 Mpa. The impact strength of composite with 35% fiber pulp washes highest than 45% to 55% dung fiber pulp. This produces composite sheet will be used for the surfboards, sporting goods, building panel this not only reduces the cost but also save from environmental pollution.


2021 ◽  
Vol 877 ◽  
pp. 3-8
Author(s):  
Prathumrat Nuyang ◽  
Atiwat Wiriya-Amornchai ◽  
Watthanaphon Cheewawuttipong

The effect of compatibilizer agent was studied when adding Aluminum fine powder (Al) to reinforce in Polypropylene (PP) by compared between polymer matrix composites (PMCs) and PMCs added Polypropylene graft maleic anhydride (PP-g-MAH).The average particle size of the aluminum fine powder was around 75 μm filled in polypropylene with different proportions of 2.5, 5, 7.5 and 10wt%. PMCs were prepared using the internal mixer. The results found that when the amount of aluminum fine powder increased, the mechanical properties had changed, i.e., tensile strength, and Young’s Modulus increased, while the impact strength and elongation at break decreased. But, when adding compatibilizer 1wt% it was found that the trend of tensile strength, and Young’s Modulus increased that compared with non-compatibilizer, but the impact strength and elongation at break decreased. The part of the morphology of PMCs with non-compatibilizer was found that the particle of aluminum fine powder dispersed in the matrix phase, but there were many microvoids between filler and matrix. But, PMCs with compatibilizer caused the microvoids between filler and matrix to be reduced.


2014 ◽  
Vol 14 (1) ◽  
pp. 13-16 ◽  
Author(s):  
K.N. Braszczyńska-Malik

Abstract The results of some mechanical properties of four Mg-5Al-xRE-0.4Mn (x = 1 - 5) alloys are presented. The microstructure of experimental alloys consisted of an α-Mg phase and an α+γ semi-divorced eutectic, Al11RE3 phase and an Al10RE2Mn7 intermetallic compound. For gravity casting in metal mould alloys, Brinell hardness, impact strength, tensile and compression properties at ambient temperature were determined. The performed mechanical tests allowed the author to determine the proportional influence of the mass fraction of rare earth elements in the alloys on their tensile strength, yield strength, compression strength and Brinell hardness. The impact strength of the alloys slightly decreases with a rise in the rare earth elements mass fraction.


2020 ◽  
Vol 833 ◽  
pp. 8-12
Author(s):  
Salina Budin ◽  
Koay Mei Hyie ◽  
Hamid Yussof ◽  
Aulia Ishak ◽  
Rosnani Ginting

Acrylonitrile-butadiene-styrene (ABS) is one of the most widely used plastic. The application of ABS increases rapidly in industries recently. The drawback of the increasing demand of ABS is the increment of ABS waste. Huge increment in ABS waste has led to the increasing of environmental pollution. The demand in green technology and sustainability of resources has urged the need of recycling of ABS waste. However, the mechanical properties of the recycled ABS are deteriorated. Hence, this work aims to study the mechanical properties of blend virgin and recycled ABS. The first sample started with 100wt% of virgin ABS. While the second to eleventh samples was a mixing of virgin and recycled ABS at 10wt% incremental recycled ABS. The last sample was prepared using 100wt% of recycled ABS. The results show that the tensile strength of 100wt% of recycled ABS is slightly decreased as compared to 100wt% virgin ABS. Similar trend was observed on traverse rupture strength (TRS) when the TRS for 100wt% of recycled ABS is lower by 8% when compared to 100wt% of virgin ABS. The most significant change is observed on the impact strength. The impact strength for 100wt% of recycled ABS is substantially dropped by 86% as compared to 100wt% of virgin ABS.


Sign in / Sign up

Export Citation Format

Share Document