Installation Characteristics of Variable Cycle Engine Based on Inlet Flow Matching

Author(s):  
Haoying Chen ◽  
Haibo Zhang ◽  
Yong Wang ◽  
Qiangang Zhen

Abstract As per few investigation in installed performance for variable cycle engines, an analysis scheme is proposed on the basis of integrating variable cycle engine and supersonic inlet system model. An integrated mathematical model, containing the inlet and the variable cycle engine is built, realizing the simulation of influences on the installation performance by varying geometry components. The impact on engine performance of variable geometric regulation was analyzed and concluded respectively. The experimental results show that the overflow resistance of the variable cycle engine with variable geometry optimization is reduced at subsonic cruise stage, and the installed fuel consumption is reduced, which significantly improves the installation performance.

2011 ◽  
Vol 317-319 ◽  
pp. 1999-2006
Author(s):  
Yu Wan ◽  
Ai Min Du ◽  
Da Shao ◽  
Guo Qiang Li

According to the boost mathematical model verified by experiments, the valve train of traditional gasoline engine is optimized and improved to achieve extended expansion cycle. The simulation results of extended expansion gasoline engine shows that the extended expansion gasoline engine has a better economic performance, compared to traditional gasoline engines. The average brake special fuel consumption (BSFC) can reduce 22.78 g / kW•h by LIVC, but the negative impacts of extended expansion gasoline engine restrict the potential of extended expansion gasoline engine. This paper analyzes the extended expansion gasoline engine performance under the influence of LIVC, discusses the way to further improve extended expansion gasoline engine performance.


Author(s):  
Krupych, R. ◽  
Nishchenko, I. ◽  
Shevchuk, R. ◽  
Krupych, S.

Purpose. Development of mathematical model of oscillating system “manual vibration shock shaker – fruit branch” for the purpose of theoretical substantiation of the parameters of the shaker. Methods. The basic positions of mathematics, theoretical mechanics, mathematical modeling, program development and numerical calculations on the PC using methods of constructing mathematical models of functioning of agricultural machines are used. Results. The paper proposes a mathematical system model “manual vibration shock shaker – fruit branch” of six differential equations describing the motion of five separate masses (the mass of branch and four masses of individual shaker strings) and differential equations of the transverse and rotational motion of the system as whole. The mathematical system model determines the regularity of the motion of all masses, as well as the reactions of the viscals of the oscillatory system to the impact and after the impact that is generated in the shock mechanism. The proposed nonlinear, complex system of differential equations solves the numerical Runge-Kutta method of the fourth order of accuracy. On the basis of the calculated data the theoretical regularities of change of movement, speed and acceleration of a branch in the place of capture are received, which confirm that in the case of interaction of the cups of the shock mechanism there is blow that is accompanied by an increase in the acceleration of the branch, which is 4–5 times greater than the acceleration of the vibration mode of operation. Conclusions 1. The mathematical model of oscillating system “manual vibration shock shaker – fruit branch” is proposed in the form of system of six differential equations that allows to theoretically substantiate the basic modes of work of the manual shaker in the vibration shock mode to provide the agrotechnical necessary extraction completeness. 2. The received theoretical regularities of change of displacement, speed and acceleration of branch at the place of capture confirm the effectiveness of the vibration shock mode of the shaker. Due to the vibration-shock mode, the acceleration of the branch at the point of transmission of disturbing forces is 4–5 times higher than the acceleration of the vibrational operation mode. Keywords: manual shakes, vibration shocking process, oscillation oscillators, mathematical model, fruit branch, harvesting.


Author(s):  
M. Eric Lyall ◽  
Fred J. Eisert ◽  
Douglas C. Rabe ◽  
Patrick M. Fleisher

This paper presents a procedure for experimentally optimizing a multistage axial compressor. Due to the usual proprietary nature of such tests, a mean-line model of a nine-stage compressor with three rows of variable geometry is used instead of a real machine as a testbed for explaining the optimization method. The compressor is optimized to achieve design-intent corrected flow and pressure ratio while achieving acceptable efficiency and stage matching. The optimization is performed using a response surface methodology that leverages a full factorial design of experiments approach. The resulting empirical models of compressor performance are of high quality, with coefficients of determination exceeding 0.99. An important finding of the work is that stage interactions are important for modeling both efficiency and stage matching, much more than for corrected flow and pressure ratio. Additionally the empirical equations resulting from the design of experiments analysis provide sensitivities due to changes in the variable geometry. These sensitivities can be applied to understanding the impact of uncertainties related to rigging the variable geometry and for assessing potential new or upgraded compressor designs.


2017 ◽  
Vol 19 (8) ◽  
pp. 854-872
Author(s):  
José Galindo ◽  
Hector Climent ◽  
Olivier Varnier ◽  
Chaitanya Patil

Internal combustion engine developments are more focused on efficiency optimization and emission reduction for the upcoming future. To achieve these goals, technologies like downsizing and downspeeding are needed to be developed according to the requirement. These modifications on thermal engines are able to reduce fuel consumption and [Formula: see text] emission. However, implementation of these kind of technologies asks for right and efficient charging systems. This article consists of study of different boosting systems and architectures (single- and two-stage) with combination of different charging systems like superchargers and e-boosters. A parametric study is carried out with a zero-dimensional engine model to analyze and compare the effects of these different architectures on the same base engine. The impact of thermomechanical limits, turbo sizes and other engine development option characterizations are proposed to improve fuel consumption, maximum power and performance of the downsized/downspeeded diesel engines.


1997 ◽  
Vol 119 (2) ◽  
pp. 469-477 ◽  
Author(s):  
G. E. Welch ◽  
S. M. Jones ◽  
D. E. Paxson

The benefits of wave rotor topping in small (300- to 500-kW [400- to 700-hp] class) and intermediate (2000- to 3000-kw [3000- to 4000-hp] class) turboshaft engines, and large (350- to 450-kN [80,000- to 100,000-lbf] class) high-bypass-ratio turbofan engines are evaluated. Wave rotor performance levels are calculated using a one-dimensional design/analysis code. Baseline and wave-rotor-enhanced engine performance levels are obtained from a cycle deck in which the wave rotor is represented as a burner with pressure gain. Wave rotor topping is shown to enhance the specific fuel consumption and specific power of small- and intermediate-sized turboshaft engines significantly. The specific fuel consumption of the wave-rotor-enhanced large turbofan engine can be reduced while it operates at a significantly reduced turbine inlet temperature. The wave-rotor-enhanced engine is shown to behave off-design like a conventional engine. Discussion concerning the impact of the wave rotor/gas turbine engine integration identifies technical challenges.


Author(s):  
Apostolos Pesiridis ◽  
Benjamin Dubois ◽  
Ricardo F. Martinez-Botas

The present paper discusses the impact of a new type of turbocharger, namely, the Active Control Turbocharger (ACT). The aim of this work was to prove the advantage of this type of turbocharger over the current state-of-the-art: the Variable Geometry Turbocharger (VGT). This was achieved by carrying out a comparison between two commercial Diesel engine models (through the use of a commercial engine simulation software), which belong to the same family: one 10 litre engine equipped with VGT (originally) was consecutively compared to the same model of engine modified for ACT operation and through the integration of the ACT into the 81 version of the same engine in order to demonstrate the ACT’s downsizing capability. The study has been carried out for speeds between 800 and 2000 rpm, and a fuel-air ratio range of between 0.017 and 0.057. The results showed that the actuation of the turbine in ACT mode (through the sinusoidal regulation of the turbine inlet area with each incoming exhaust gas pressure pulse) increases greatly the energy available at the turbine inlet. This leads to an increase of the boost pressure at the intake of the engine by an average 30%. The specific fuel consumption was found to be similar throughout engine operating range with a penalty of up to 10% for the ACT engine of the same size (10 litre). A comparison was then carried out between the 10 litre VGT engine and the 8 litre ACT engine. The 8 litre has been found to produce up to 37% more torque and horse power under 1400 rpm and obtained very similar performance to the 10 litre VGT engine at higher speeds. At constant power output between the 8 and 10 litre engines, it has been found that the fuel consumption was decreased by a maximum of 9% when using the 8 litre engine. The results of the present study were encouraging with respect to the potential of ACT to downsize the internal combustion engine.


Author(s):  
Mbelle Bisong Samuel ◽  
Paune Felix ◽  
Youmene Nongosso Miguel ◽  
Tambere Samam Cyrille ◽  
Pierre Kisito Talla

The consumption of fuel in vehicles depends on many factors such as the state of the roads, the state of the engine and the driver’s behavior. A mathematical model for evaluating vehicle fuel consumption on a 100 km interval at standard operating weather conditions was developed. This mathematical model developed took into consideration many factors, but the main factors were those related to weather conditions and temperature. Here a new simulation program for determining the influence of temperature and weather conditions on fuel consumption is built using the software Matlab. For efficient simulations the model uses a set of data for an SUV and then makes varying only the parameters that are related to weather and temperature for the simulation. During the simulation process, a set of 10 vehicle models and 8 roads conditions were chosen to run down the simulations and only the parameters of temperature, the drag coefficient and coefficient of rolling resistances respectively were subjected to variations during each of the simulations. Upon simulation, different results were obtained for the different parameters considered. For every 15% drop in temperature, 0.1litre, 0.12litre and 0.04litre increase in fuel consumption for the set of parameters chosen was noticed. These results were analyzed and interpreted with the help of Microsoft Excel and were found to be satisfactory given that it permits manufacturers and car users to have a notion of the impact of ambient temperature and weather conditions on fuel consumption, thereby promoting optimum usage of fuel, hence reducing the effect of greenhouse emissions in the atmosphere.


Author(s):  
Keshav S. Varde ◽  
Shubha K. Veeramachineni

There has been considerable interest in recent years in using blends of petroleum diesel and biodiesels in diesel engines. Some of the interests arise in making use of renewable fuels, or in reducing dependency on imported fossil fuels and, in some cases, to provide economic boost to agricultural industry. It is believed that substitution of a small amount of biodiesel for petroleum diesel can reduce the import of fuel and help in trade balance. Biodiesels, whether derived from vegetable oils or animal fat, have many properties that align with those of petroleum diesel. This makes biodiesel a good candidate for blending it in small quantities with petroleum diesel. Studies have shown biodiesel blends to work well in diesel engines. However, experimental investigations of biodiesel blends have shown some discrepancies in engine thermal efficiency and emissions of NOx. A combustion simulation model for diesel engine may help to understand some of the differences in engine performance when different fuels are used. This paper deals with an existing simulation model that was applied to a diesel engine operating on biodiesel blends. The model was a modified version of GT-Power that was specifically modified to fit the test engine. The model was calibrated using a single cylinder, naturally aspirated, DI diesel engine operating on ultra-low sulfur (ULSD) diesel. It was used to predict engine performance when operating on different blends of soy biodiesel and ULSD. The simulation utilized detailed physical and chemical properties of the blends to predict cylinder pressures, fuel consumption, and emissions of oxides of nitrogen (NOx). Comparison between predicted and experimental values showed good correlations. The predicted trends in fuel consumption, emissions of NOx and smoke showed comparable trends. The model allows the user to change fuel properties to assess the impact of variations in blend composition on exhaust emissions. This paper discusses comparisons between the predicted and experimental results and how fuel composition can possibly impact NOx emissions.


2017 ◽  
Vol 19 (8) ◽  
pp. 873-885 ◽  
Author(s):  
José Galindo ◽  
Hector Climent ◽  
Olivier Varnier ◽  
Chaitanya Patil

Nowadays, internal combustion engine developments are focused on efficiency optimization and emission reduction. Increasing focus on world harmonized ways to determine the performance and emissions on Worldwide harmonized Light vehicles Test Procedure cycles, it is essential to optimize the engines for transient operations. To achieve these objectives, the downsized or downspeeded engines are required, which can reduce fuel consumption and pollutant emissions. However, these technologies ask for efficient charging systems. This article consists of the study of different boosting architectures (single stage and two stage) with a combination of different charging systems like superchargers and e-boosters. A parametric study has been carried out with a zero-dimensional engine model to analyze and compare different architectures on the different engine displacements. The impact of thermomechanical limits, turbo sizes and other engine development option characterizations is proposed to improve fuel consumption, maximum power and performance of the downsized/downspeeded diesel engines during the transient operations.


Sign in / Sign up

Export Citation Format

Share Document