Unsteady Mixed Bioconvection Flow of a Nanofluid Between Two Contracting or Expanding Rotating Discs

2016 ◽  
Vol 71 (3) ◽  
pp. 261-272 ◽  
Author(s):  
Jiao Jiao Li ◽  
Hang Xu ◽  
Ammarah Raees ◽  
Qing Kai Zhao

AbstractAn investigation is made for a three-dimensional unsteady mixed nano-bioconvection flow between two contracting or expanding rotating discs. The passively controlled nanofluid model in which Brownian diffusion and thermophoresis are considered as the two dominant factors for nanoparticle/base-fluid slip mechanisms is introduced for description of this flow problem. A novel similarity transformation is introduced so that the governing equations embodying the conservation of total mass, momentum, thermal energy, nanoparticle volume fraction, and microorganisms are reduced to a set of five fully coupled ordinary differential equations. Exact solutions are then obtained analytically for this complex nonlinear system. Besides, the influences of various physical parameters on distributions of velocity, temperature, nanoparticle volume fraction, and the density of motile microorganisms, along with the local Nusselt number and the local wall motile microorganisms flux, are presented and discussed. It is expected that this study can provide a theoretical base for understanding the transport mechanisms of unsteady bioconvection in nanofluids.

2021 ◽  
Vol 19 (1) ◽  
pp. 1029-1046
Author(s):  
Abeer H. Bakhsh ◽  
Abdullah A. Abdullah

Abstract A linear stability analysis is performed for the onset of Marangoni convection in a horizontal layer of a nanofluid heated from below and affected by rotation. The top boundary of the layer is assumed to be impenetrable to nanoparticles with their distribution being determined from a conservation condition while the bottom boundary is assumed to be a rigid surface with fixed temperature. The motion of the nanoparticles is characterized by the effects of thermophoresis and Brownian diffusion. A modification model is used in which the effects of Brownian diffusion and thermophoresis are taken into consideration by new expressions in the nanoparticle mass flux. Also, material properties of the nanofluid are modelled by non-constant constitutive expressions depending on nanoparticle volume fraction. The steady-state solution is shown to be well approximated by an exponential distribution of the nanoparticle volume fraction. The Chebyshev-Tau method is used to obtain the critical thermal and nanoparticle Marangoni numbers. Different stability boundaries are obtained using the modified model and the rotation.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Navid Freidoonimehr ◽  
Behnam Rostami ◽  
Mohammad Mehdi Rashidi ◽  
Ebrahim Momoniat

A coupled system of nonlinear ordinary differential equations that models the three-dimensional flow of a nanofluid in a rotating channel on a lower permeable stretching porous wall is derived. The mathematical equations are derived from the Navier-Stokes equations where the governing equations are normalized by suitable similarity transformations. The fluid in the rotating channel is water that contains different nanoparticles: silver, copper, copper oxide, titanium oxide, and aluminum oxide. The differential transform method (DTM) is employed to solve the coupled system of nonlinear ordinary differential equations. The effects of the following physical parameters on the flow are investigated: characteristic parameter of the flow, rotation parameter, the magnetic parameter, nanoparticle volume fraction, the suction parameter, and different types of nanoparticles. Results are illustrated graphically and discussed in detail.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1395
Author(s):  
Hammad Alotaibi ◽  
Mohamed R. Eid

This paper discusses the Darcy–Forchheimer three dimensional (3D) flow of a permeable nanofluid through a convectively heated porous extending surface under the influences of the magnetic field and nonlinear radiation. The higher-order chemical reactions with activation energy and heat source (sink) impacts are considered. We integrate the nanofluid model by using Brownian diffusion and thermophoresis. To convert PDEs (partial differential equations) into non-linear ODEs (ordinary differential equations), an effective, self-similar transformation is used. With the fourth–fifth order Runge–Kutta–Fehlberg (RKF45) approach using the shooting technique, the consequent differential system set is numerically solved. The influence of dimensionless parameters on velocity, temperature, and nanoparticle volume fraction profiles is revealed via graphs. Results of nanofluid flow and heat as well as the convective heat transport coefficient, drag force coefficient, and Nusselt and Sherwood numbers under the impact of the studied parameters are discussed and presented through graphs and tables. Numerical simulations show that the increment in activation energy and the order of the chemical reaction boosts the concentration, and the reverse happens with thermal radiation. Applications of such attractive nanofluids include plastic and rubber sheet production, oil production, metalworking processes such as hot rolling, water in reservoirs, melt spinning as a metal forming technique, elastic polymer substances, heat exchangers, emollient production, paints, catalytic reactors, and glass fiber production.


2021 ◽  
Vol 54 (1) ◽  
pp. 488-499
Author(s):  
Ozwah S. Alharbi ◽  
Abdullah A. Abdullah

Abstract A revised model of the nanoparticle mass flux is introduced and used to study the thermal instability of the Rayleigh-Benard problem for a horizontal layer of nanofluid heated from below. The motion of nanoparticles is characterized by the effects of thermophoresis and Brownian diffusion. The nanofluid layer is confined between two rigid boundaries. Both boundaries are assumed to be impenetrable to nanoparticles with their distribution being determined from a conservation condition. The material properties of the nanofluid are allowed to depend on the local volume fraction of nanoparticles and are modelled by non-constant constitutive expressions developed by Kanafer and Vafai based on experimental data. The results show that the profile of the nanoparticle volume fraction is of exponential type in the steady-state solution. The resulting equations of the problem constitute an eigenvalue problem which is solved using the Chebyshev tau method. The critical values of the thermal Rayleigh number are calculated for several values of the parameters of the problem. Moreover, the critical eigenvalues obtained were real-valued, which indicates that the mode of instability is via a stationary mode.


Author(s):  
Mohammed Almakki ◽  
Sharadia Dey ◽  
Sabyasachi Mondal ◽  
Precious Sibanda

We investigate entropy generation in unsteady three-dimensional axisymmetric MHD nanofluid flow over a non-linearly stretching sheet. The flow is subject to thermal radiation and a chemical reaction. The conservation equations were solved using the spectral quasi-linearization method. The novelty of the work is in the study of entropy generation in three-dimensional axisymmetric MHD nanofluid and the choice of the spectral quasilinearization method as the solution method. The effects of Brownian motion and thermophoresis are also taken into account when the nanofluid particle volume fraction on the boundary in passively controlled. The results show that as the Hartman number increases, both the Nusselt number and the Sherwood number decrease whereas the skin friction increases. It is further shown that an increase in the thermal radiation parameter corresponds to a decrease in the Nusselt number. Moreover, entropy generation increases with the physical parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Azad Hussain ◽  
Qusain Haider ◽  
Aysha Rehman ◽  
M. Y. Malik ◽  
Sohail Nadeem ◽  
...  

The current research aims to study the mixed convection of a hybrid-based nanofluid consisting of ethylene glycol-water, copper (II) oxide (CuO) and titanium dioxide (TiO2) in a vertical cone. A hybrid base blend model is used to examine the nanofluid’s hydrostatic and thermal behaviors over a diverse range of Reynolds numbers. The application of mixed nanoparticles rather than simple nanoparticles is one of the most imperative things in increasing the heat flow of the fluids. To test such a flow sector, for the very first time, a hybrid-based mixture model was introduced. Also, the mixture framework is a single-phase model formulation, which was used extensively for heat transfer with nanofluids. Comparison of computed values with the experimental values is presented between two models (i.e., the model of a mixture with the model of a single-phase). The natural convection within the liquid phase of phase change material is considered through the liquid fraction dependence of the thermal conductivity. The predicted results of the current model are also compared with the literature; for numerical results, the bvp4c algorithm is used to quantify the effects of nanoparticle volume fraction diffusion on the continuity, momentum, and energy equations using the viscous model for convective heat transfer in nanofluids. Expressions for velocity and temperature fields are presented. Also, the expressions for skin frictions, shear strain, and Nusselt number are obtained. The effects of involved physical parameters (e.g., Prandtl number, angular velocity ratio, buoyancy ratio, and unsteady parameter) are examined through graphs and tables.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Aneela Bibi ◽  
Hang Xu

A mathematical model is developed to examine the behaviors of a peristalsis flow with nanoparticles in a symmetric channel under the magnetic environment. Here, the nanofluid is electrically conducted through an external magnetic field. Thermal radiation and Joule heating effects are also retained in the present analysis. Under the lubrication approach, the reduced nonlinear systems are obtained. Then, they are solved very efficiently by means of a homotopy analysis method-based package BVPh 2.0. The influences of important physical parameters on the flow behaviors are presented. Analysis of the entropy generation is illustrated. It is found that the Brownian diffusion and the thermophoresis are the two most important nanoparticle slip mechanisms in the Jeffery fluids as well. Besides, the Hartman number, the type of the Jeffery fluid, the Brinkman number, and the thermal radiation parameter play important roles on flow behaviors. Results show that the temperature profile enhanced but the nanoparticles’ volume fraction profiles lowered with increase in the Hartman number. However, using the Jeffery nanofluid induces effect on the velocity distribution that decreases with the increase in the Jeffery fluid parameter. It is also found that the generated total entropy increases with an increase in the Brownian motion parameter but with a decrease in the thermophoresis parameter.


Author(s):  
Md Faisal Md Basir ◽  
Mohammed Jashim Uddin ◽  
Ahmad Izani Md Ismail

Unsteady three-dimensional laminar stagnation point forced convective boundary layer magnetohydrodynamic flow of a bionanofluid with variable transport properties is studied theoretically and numerically. Thermal convective and zero mass flux boundary conditions are incorporated in this study. The transport properties are assumed to be a function of nanoparticle volume fraction to get physically realistic results. The dimensional boundary layer equations along with the coupled boundary conditions are transformed via similarity transformations into a system of ordinary differential equations. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth-, fifth-order numerical method. The effect of selected governing parameters, namely, viscosity, thermal conductive, mass diffusivity, microorganism diffusivity, magnetic field and bioconvection Schmidt number, on the dimensionless velocity, temperature, nanoparticle volume fraction, microorganism, skin friction coefficient, heat transfer rate, mass transfer rate and microorganism transfer rate, is illustrated graphically and interpreted in detail. Comparisons with previous works are carried out for some limiting cases and found to be in good agreement.


2020 ◽  
pp. 875608792095161
Author(s):  
Zaheer Abbas ◽  
Sabeeh Khaliq

This study is a non-isothermal analysis of the calendering process using a water based nanofluid with Cu-nanoparticles. The basic flow equations are simplified under the lubrication approximation theory (LAT) and non-dimensionalized. Theoretical velocity and pressure gradient solutions are achieved, and temperature distribution is numerically computed by finite difference method. The impact of nanoparticle volume fraction on pressure distribution, fluid velocity, temperature distribution, power input, and separating force are presented through graphs and discussed. Nanoparticle volume fraction enhances the magnitude of pressure, pressure gradient, and temperature distribution. Power input and roll-separating force also rise for higher nanoparticle volume fraction. Model II of dynamic viscosity of nanofluid has a greater impact on physical parameters as compared to the model I of dynamic viscosity.


Sign in / Sign up

Export Citation Format

Share Document