Die gemeinsame Wurzel der Lyse von Escherichia coli durch Penicillin oder durch Phagen

1957 ◽  
Vol 12 (7) ◽  
pp. 421-427 ◽  
Author(s):  
W. Weidel ◽  
J. Primosigh

One of the two layers of the E. coli B cell wall is shown to possess the chemical composition typical of a gram-positive microorganism. It is this layer which lends support and strength to the entire cell wall structure, its rigidity depending up on the incorporation of building blocks made up from alanine, glutamic acid, diaminopimelic acid, muramic acid and glucosamine.Phage enzyme is an agent capable of removing these stabilizing units from the „gram-positive “ layer, thereby causing it to collapse. Penicillin appears to prevent the biosynthetic incorporation of the same stabilizing units into growing cell walls, thus producing eventually the effect of cell wall disruption in a basically similar way.The rather manifold aspects of these findings are discussed at some length.

2020 ◽  
Author(s):  
Kelsey Cremin ◽  
Bryn Jones ◽  
James Teahan ◽  
Gabriel N. Meloni ◽  
David Perry ◽  
...  

AbstractThis paper reports on the use of scanning ion conductance microscopy (SICM) to locally map the ionic properties and charge environment of two live bacterial strains: the gramnegative Escherichia coli and the gram-positive Bacillus subtilis. SICM results find heterogeneities across the bacterial surface, and significant differences among the grampositive and -negative bacteria. The bioelectrical environment of the B. subtilis was found to be considerably more negatively charged compared to E. coli. SICM measurements, fitted to a simplified finite element method (FEM) model, revealed surface charge values of −80 to −140 mC m−2 for the gram-negative E. coli. The gram-positive B. subtilis show a much higher conductivity around the cell wall, and surface charge values between −350 and −450 mC m−2 were found using the same simplified model. SICM was also able to detect regions of high negative charge near B. subtilis, not detected in the topographical SICM response and attributed to extracellular polymeric substance. To further explore how the B. subtilis cell wall structure can influence the SICM current response, a more comprehensive FEM model, accounting for the physical properties of the gram-positive cell wall, was developed. The new model provides a more realistic description of the cell wall and allowed investigation of the relation between its key properties and SICM currents, building foundations to further investigate and improve understanding of the gram-positive cellular microenvironment.Abstract Figure


2020 ◽  
Author(s):  
Alexis J. Apostolos ◽  
Julia M. Nelson ◽  
Marcos M. Pires

AbstractBacterial cell walls contain peptidoglycan (PG), a scaffold that provides proper rigidity to resist lysis from internal osmotic pressure and a barrier to protect cells against external stressors. It consists of repeating sugar units with a linkage to a stem peptide that becomes highly crosslinked by cell wall transpeptidases (TP). Because it is an essential component of the bacterial cell, the PG biosynthetic machinery is often the target of antibiotics. For this reason, cellular probes that advance our understanding of PG biosynthesis and its maintenance can be powerful tools to reveal novel drug targets. While synthetic PG fragments containing L-Lysine in the 3rd position on the stem peptide are easier to access, those with meso-diaminopimelic acid (m-DAP) pose a severe synthetic challenge. Herein, we describe a solid phase synthetic scheme based on the widely available Fmoc-protected L-Cysteine building block to assemble meso-cystine (m-CYT), which mimics key structural features of m-DAP. To demonstrate proper mimicry of m-DAP, cell wall probes were synthesized with m-CYT in place of m-DAP and evaluated for their metabolic processing in live bacterial cells. We found that m-CYT-based cell wall probes were properly processed by TPs in various bacterial species that endogenously contain m-DAP in their PG. We anticipate that this strategy, which is based on the use of inexpensive and commercially available building blocks, can be widely adopted to provide greater accessibility of PG mimics for m-DAP containing organisms.


2021 ◽  
Vol 06 ◽  
Author(s):  
Ayekpam Chandralekha Devi ◽  
G. K. Hamsavi ◽  
Simran Sahota ◽  
Rochak Mittal ◽  
Hrishikesh A. Tavanandi ◽  
...  

Abstract: Algae (both micro and macro) have gained huge attention in the recent past for their high commercial value products. They are the source of various biomolecules of commercial applications ranging from nutraceuticals to fuels. Phycobiliproteins are one such high value low volume compounds which are mainly obtained from micro and macro algae. In order to tap the bioresource, a significant amount of work has been carried out for large scale production of algal biomass. However, work on downstream processing aspects of phycobiliproteins (PBPs) from algae is scarce, especially in case of macroalgae. There are several difficulties in cell wall disruption of both micro and macro algae because of their cell wall structure and compositions. At the same time, there are several challenges in the purification of phycobiliproteins. The current review article focuses on the recent developments in downstream processing of phycobiliproteins (mainly phycocyanins and phycoerythrins) from micro and macroalgae. The current status, the recent advancements and potential technologies (that are under development) are summarised in this review article besides providing future directions for the present research area.


1967 ◽  
Vol 105 (2) ◽  
pp. 759-765 ◽  
Author(s):  
K. Clarke ◽  
G. W. Gray ◽  
D. A. Reaveley

1. The insoluble residue and material present in the aqueous layers resulting from treatment of cell walls of Pseudomonas aeruginosa with aqueous phenol were examined. 2. The products (fractions AqI and AqII) isolated from the aqueous layers from the first and second extractions respectively account for approx. 25% and 12% of the cell wall and consist of both lipopolysaccharide and muropeptide. 3. The lipid part of the lipopolysaccharide is qualitatively similar to the corresponding material (lipid A) from other Gram-negative organisms, as is the polysaccharide part. 4. The insoluble residue (fraction R) contains sacculi, which also occur in fraction AqII. On hydrolysis, the sacculi yield glucosamine, muramic acid, alanine, glutamic acid and 2,6-diaminopimelic acid, together with small amounts of lysine, and they are therefore similar to the murein sacculi of other Gram-negative organisms. Fraction R also contains substantial amounts of protein, which differs from that obtained from the phenol layer. 5. The possible association or aggregation of lipopolysaccharide, murein and murein sacculi is discussed.


2019 ◽  
Vol 218 (4) ◽  
pp. 1408-1421 ◽  
Author(s):  
Xiaohui Liu ◽  
Jiazhou Li ◽  
Heyu Zhao ◽  
Boyang Liu ◽  
Thomas Günther-Pomorski ◽  
...  

Even though cell walls have essential functions for bacteria, fungi, and plants, tools to investigate their dynamic structure in living cells have been missing. Here, it is shown that changes in the intensity of the plasma membrane dye FM4-64 in response to extracellular quenchers depend on the nano-scale porosity of cell walls. The correlation of quenching efficiency and cell wall porosity is supported by tests on various cell types, application of differently sized quenchers, and comparison of results with confocal, electron, and atomic force microscopy images. The quenching assay was used to investigate how changes in cell wall porosity affect the capability for extension growth in the model plant Arabidopsis thaliana. Results suggest that increased porosity is not a precondition but a result of cell extension, thereby providing new insight on the mechanism plant organ growth. Furthermore, it was shown that higher cell wall porosity can facilitate the action of antifungal drugs in Saccharomyces cerevisiae, presumably by facilitating uptake.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 119 ◽  
Author(s):  
Daniel J. Cosgrove

The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity


Fibers ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 6 ◽  
Author(s):  
Camille Goudenhooft ◽  
David Siniscalco ◽  
Olivier Arnould ◽  
Alain Bourmaud ◽  
Olivier Sire ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1715
Author(s):  
Eleftheria Roumeli ◽  
Leah Ginsberg ◽  
Robin McDonald ◽  
Giada Spigolon ◽  
Rodinde Hendrickx ◽  
...  

Individual plant cells are the building blocks for all plantae and artificially constructed plant biomaterials, like biocomposites. Secondary cell walls (SCWs) are a key component for mediating mechanical strength and stiffness in both living vascular plants and biocomposite materials. In this paper, we study the structure and biomechanics of cultured plant cells during the cellular developmental stages associated with SCW formation. We use a model culture system that induces transdifferentiation of Arabidopsis thaliana cells to xylem vessel elements, upon treatment with dexamethasone (DEX). We group the transdifferentiation process into three distinct stages, based on morphological observations of the cell walls. The first stage includes cells with only a primary cell wall (PCW), the second covers cells that have formed a SCW, and the third stage includes cells with a ruptured tonoplast and partially or fully degraded PCW. We adopt a multi-scale approach to study the mechanical properties of cells in these three stages. We perform large-scale indentations with a micro-compression system in three different osmotic conditions. Atomic force microscopy (AFM) nanoscale indentations in water allow us to isolate the cell wall response. We propose a spring-based model to deconvolve the competing stiffness contributions from turgor pressure, PCW, SCW and cytoplasm in the stiffness of differentiating cells. Prior to triggering differentiation, cells in hypotonic pressure conditions are significantly stiffer than cells in isotonic or hypertonic conditions, highlighting the dominant role of turgor pressure. Plasmolyzed cells with a SCW reach similar levels of stiffness as cells with maximum turgor pressure. The stiffness of the PCW in all of these conditions is lower than the stiffness of the fully-formed SCW. Our results provide the first experimental characterization of the mechanics of SCW formation at single cell level.


1969 ◽  
Vol 115 (4) ◽  
pp. 797-805 ◽  
Author(s):  
H R Perkins

β-Hydroxydiaminopimelic acid, together with some diaminopimelic acid, occurs in the cell-wall mucopeptide of certain Actinomycetales. These components were converted into their di-DNP derivatives and separated by chromatography. Hence the relative proportions present in the cell walls of a number of species were measured. The problem of acid-induced inversion of configuration was studied. Of the diaminohydroxypimelic acids isomer B (see Scheme 2; amino groups meso, hydroxy group threo to its neighbouring amino group) always predominated but a small proportion of isomer D (amino groups l, hydroxy group erythro) also occurred. The configuration of the diaminohydroxypimelic acids was determined by periodate oxidation to glutamic γ-semialdehyde, which underwent spontaneous ring-closure. Reduction with sodium borohydride produced optically active proline, the configuration of which was determined by direct measurement of the optical rotation of DNP-proline. Un-cross-linked diaminohydroxypimelic acid in the cell wall was oxidized with periodate in the presence of ammonia. Since the remaining amino group was bound in peptide linkage, ring-closure was prevented and borohydride reduction of the aldehyde–ammonia presumed to be present resulted in the formation of ornithine. The quantity of ornithine was used as a measure of the degree of cross-linking.


Sign in / Sign up

Export Citation Format

Share Document