High-pressure Synthesis and Structural, Electrical and Magnetic Properties of a New Filled Skutterudite TbFe4P12

2006 ◽  
Vol 61 (12) ◽  
pp. 1471-1476 ◽  
Author(s):  
Ichimin Shirotani ◽  
Keiki Takeda ◽  
Chihiro Sekine ◽  
Junichi Hayashi ◽  
Ryusuke Nakada ◽  
...  

The new filled skutterudite TbFe4P12 has been prepared at around 4 GPa and 1050 °C. Powder X-ray diffraction of TbT4P12 (T = Fe and Ru) has been studied with synchrotron radiation at ambient pressure. The crystal structures of both compounds were refined by Rietveld methods at ambient pressure. The positional parameters, bond lengths and bond angles have been obtained for TbT4P12 (T = Fe and Ru). The electrical and magnetic properties of TbFe4P12 have been investigated at low temperatures. The susceptibility of this phosphide follows a Curie-Weiss behavior at higher temperatures. The linear slope of the χ−1 vs. T curve from 15 to 300 K yields an effective magnetic moment of 9.48 μB. This value is close to the magnetic moment of the Tb3+ ion calculated from Hund’s rule, 9.72 μB. The ferromagnetic transition of TbFe4P12 was observed at around 10 K, and an electrical anomaly based on the magnetic ordering was detected. The relationship between the crystal structure and the physical properties of TbT4P12 (T = Fe and Ru) is discussed.

2018 ◽  
Vol 64 (3) ◽  
pp. 222 ◽  
Author(s):  
Mohamed Abatal

In this research, we report a detailed study of the structural, electrial and magnetic properties of the ruthenium pyrochlore with the composition (Er_2-x Sr_x) Ru_2O_7 0<=x<=0.10 prepared by solid-state reaction in air at ambient pressure.  The synthesized products were characterized using powder X-ray diffraction. The structure of the samples was refined with the Rietveld method, showing that the lattice parameters are more sensitive to the Strontium and Erbium sites. Scanning electron microscopy shows that the crystal size varies between 0.27 and 0.62 mu m. In all polycrystalline samples, the electrical resistance decreases with increasing temperature, indicating that the samples are nonmetallic. The slope of the temperature-dependent resistance profiles systematically decreases with increasing x, proving that the carrier concentration increases with increasing the Sr content. Zero-field-cooled and field cooled magnetization measurements show an irreversible behavior where the split is systematically enhanced by increasing x.


2021 ◽  
Vol 317 ◽  
pp. 10-16
Author(s):  
Nor Azah Nik-Jaafar ◽  
Roslan Abd-Shukor ◽  
Muhammad Aizat Kamarudin

The effect of Fe-substitution at the Mn-site in La0.7Ca0.3Mn1-xFexO3 (x = 0, 0.01, 0.03 and 0.05) on its structure, electrical and magnetic properties has been studied. These properties were investigated via X-ray diffraction (XRD) analysis, temperature-dependent resistance measurements and temperature-dependent AC magnetic susceptibility measurements. XRD analysis showed all samples are single phase materials. Temperature dependent resistance measurements between 30–300 K showed all samples to undergo insulator-metal transition as temperature decreases. Increase in Fe doping for x = 0, 0.01, 0.03 and 0.05 caused the transition temperature TIM to decrease from 257 K, 244 K, 205 K and 162 K respectively. The magnetic susceptibility measurements showed the samples to exhibit paramagnetic to ferromagnetic transition as temperature decreased. Increase in Fe substitution x at the Mn-site progressively decreased the Curie temperature TC from 250 K at x = 0 to 170 K at x = 0.05.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Abdollah Hajalilou ◽  
Mansor Hashim ◽  
Halimah Mohamed Kamari

This work aims to investigate the relationship between the microstructure of Ni-Zn ferrite and its electrical and magnetic properties in the presence and absence of as small amounts as 0.12% of 0.4CaO + 0.8SiO2over different sintering times. The X-ray diffraction pattern showed a single spinel phase formation in all the samples. The results indicate that grain growth occurred by increasing sintering time from 15 to 270 min in the two types of samples prepared in this study although it was greatly impeded by the additive oxides. Moreover, the oxides increase the resistivity of the ferrite and decrease its zinc loss. Magnetic properties such as induction magnetization (BS) and saturation magnetization (MS) decreased in the presence of the additives while its coercivity (HC) increased. Finally, the density of the samples was observed to increase with increasing sintering time in both types of the samples but with a higher value in the samples with no additives.


2020 ◽  
Vol 10 (03) ◽  
pp. 2050003
Author(s):  
M. R. Hassan ◽  
M. T. Islam ◽  
M. N. I. Khan

In this research, influence of adding Li2CO3 (at 0%, 2%, 4%, 6%) on electrical and magnetic properties of [Formula: see text][Formula: see text]Fe2O4 (with 60% Ni and 40% Mg) ferrite has been studied. The samples are prepared by solid state reaction method and sintered at 1300∘C for 6[Formula: see text]h. X-ray diffraction (XRD) patterns show the samples belong to single-phase cubic structure without any impurity phase. The magnetic properties (saturation magnetization and coercivity) of the samples have been investigated by VSM and found that the higher concentration of Li2CO3 reduces the hysteresis loss. DC resistivity increases with Li2CO3 contents whereas it decreases initially and then becomes constant at lower value with temperature which indicates that the studied samples are semiconductor. The dielectric dispersion occurs at a low-frequency regime and the loss peaks are formed in a higher frequency regime, which are due to the presence of resonance between applied frequency and hopping frequency of charge carriers. Notably, the loss peaks are shifted to the lower frequency with Li2CO3 additions.


2021 ◽  
Vol 7 (7) ◽  
pp. 93
Author(s):  
Samia Benmansour ◽  
Carlos J. Gómez-García

Here, we review the different series of (super)conducting and magnetic radical salts prepared with organic donors of the tetrathiafulvalene (TTF) family and oxalato-based metal complexes (ox = oxalate = C2O42−). Although most of these radical salts have been prepared with the donor bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF = ET), we also include all the salts prepared with other TTF-type donors such as tetrathiafulvalene (TTF), tetramethyl-tetrathiafulvalene (TM-TTF), bis(ethylenediseleno)tetrathiafulvalene (BEST), bis(ethylenedithio)tetraselenafulvalene (BETS) and 4,5bis((2S)-2-hydroxypropylthio)-4’,5’-(ethylenedithio)tetrathiafulvalene (DMPET). Most of the oxalate-based complexes are monomers of the type [MIII(C2O4)3]3−, [Ge(C2O4)3]2− or [Cu(C2O4)2]2−, but we also include the reported salts with [Fe2(C2O4)5]4− dimers, [MII(H2O)2[MIII(C2O4)3]2]4− trimers and homo- or heterometallic extended 2D layers such as [MIIMIII(C2O4)3]− and [MII2(C2O4)3]2−. We will present the different structural families and their magnetic properties (such as diamagnetism, paramagnetism, antiferromagnetism, ferromagnetism and even long-range magnetic ordering) that coexist with interesting electrical properties (such as semiconductivity, metallic conductivity and even superconductivity). We will focus on the electrical and magnetic properties of the so-called Day series formulated as β”-(BEDT-TTF)4[A+MIII(C2O4)3]·G, which represents the largest family of paramagnetic metals and superconductors reported to date, with more than fifty reported examples.


1999 ◽  
Vol 562 ◽  
Author(s):  
N. N. Mateeva ◽  
P. C. Hogan ◽  
K. H. Dahmen

ABSTRACTThin films of lanthanum manganates doped with Ca2+, Sr2+, Ba2+ and Pb2+ have been deposited on Si(100) substrate and their electrical and magnetic properties were discussed with respect to the composition, structure and nature of the dopant. Buffer layers of YSZ and La0.8Al0.2O3 were employed and their effect on the materials was studied. Interesting magnetotransport properties were found in some of the films, where there is a large difference between the insulator-metal transition temperature and a ferromagnetic transition temperature.


2005 ◽  
Vol 60 (8) ◽  
pp. 821-830 ◽  
Author(s):  
Jan F. Riecken ◽  
Gunter Heymann ◽  
Theresa Soltner ◽  
Rolf-Dieter Hoffmann ◽  
Hubert Huppertz ◽  
...  

The high-pressure (HP) modification of CePtSn was prepared under multianvil high-pressure (9.2 GPa) high-temperature (1325 K) conditions from the normal-pressure (NP) modification. Both modifications were investigated by powder and single crystal X-ray data: TiNiSi type, Pnma, a = 746.89(9), b = 462.88(4), c = 801.93(7) pm, wR2 = 0.0487, 452 F2 values, 20 variable parameters for NP-CePtSn, and ZrNiAl type, P6̅2m, a = 756.919(5), c = 415.166(4) pm, wR2 = 0.0546, 252 F2 values, 14 variable parameters for HP-CePtSn. Both modifications are built up from platinumcentered trigonal prisms. Together, the platinum and tin atoms form different three-dimensional [PtSn] networks in which the cerium atoms fill channels. The crystal chemistry and chemical bonding of NP- and HP-CePtSn is discussed. Susceptibility measurements of HP-CePtSn indicate Curie-Weiss behavior above 40 K with an experimental magnetic moment of 2.55(1) μB/Ce atom, indicating trivalent cerium. No magnetic ordering could be detected down to 2 K.


1987 ◽  
Vol 99 ◽  
Author(s):  
R. S. Liu ◽  
G. C. Lin ◽  
H. M. Sung ◽  
Y. C. Chen ◽  
O. C. C. Lin

ABSTRACTLa-Ba-Cu-O and Y-Ba-Cu-O superconducting systems have been successfully prepared by gel techniques with high degree of chemical homogeneity. The precursor gel was synthesized from mixture of the corresponding metallic nitrates and di-carboxylic acids. The sintered oxides prepared from the different dicarboxylic acids were all Tc = 90K perovskite superconductors. However differences in electrical and magnetic properties were also observed. Effects due to the different acids elucidated by magnetic susceptibility measurements and X-ray diffraction analysis will be discussed.


2001 ◽  
Vol 674 ◽  
Author(s):  
M. I.N. da Silva ◽  
J. C. González ◽  
M. S. Andrade

ABSTRACTIn this study, we investigated the magnetic domains of a FeMnSiNiCr stainless steel sample using Magnetic Force Microscope (MFM). We compared the magnetic patterns obtained by scanning the sample with three coated probes with different magnetic properties: Medium magnetic moment (MM), low magnetic moment (LM), and low coercivity (LC). The probe-surface separation was varied between 25 to 300 nm in order to quantify the magnetic microstructure of the sample. A simple model for the probe-sample interaction was used to interpret the contrast change as a function of the probe-surface separation. The experiment showed that the average maximum frequency decreases with the probe-surface separation and the intensity of the frequency is the strongest for the MM probe. X ray diffraction experiments were used to identify the different phases present in the sample. The X-ray diffraction experiments together with the MFM showed that α-phase islands surrounded by a γ-phase matrix are responsible for the magnetic properties of the sample.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 353-359 ◽  
Author(s):  
H. K. LEE ◽  
H. M. Park ◽  
G. V. M. Williams

The crystal structure and magnetic properties of ( Ru 1-x Sn x) Sr 2 EuCeCu 2 O z and Ru ( Sr 2-x La x) EuCeCu 2 O z(0≤ x ≤0.1) samples have been investigated to shed light on the doping-induced changes in the magnetic properties of Ru -1222 system. We show that La substitution for Sr leads to an increase in the temperature where the ferromagnetic component is observed and a moderate suppression of the ferromagnetic component whereas Sn substitution for Ru results in a significant decrease of the volume fraction of the ferromagnetic phase as well as a decrease in the magnetic ordering temperature. The experimental results are discussed in connection with the structural data studied by Rietveld refinement of the x-ray diffraction data.


Sign in / Sign up

Export Citation Format

Share Document