Hydrogen Evolution Catalyzed by Hydrogenase in Cultures of Cyanobacteria

1981 ◽  
Vol 36 (1-2) ◽  
pp. 87-92 ◽  
Author(s):  
Patrick C. Hallenbeck ◽  
Leon V. Kochian ◽  
John R. Benemann

Abstract Cultures of Anabaena cylindrica, grown on media containing 5 mᴍ NH4Cl (which represses heterocyst formation), evolved hydrogen after a period of dark incubation under an argon atmosphere. This hydrogen production was not due to nitrogenase activity, which was nearly undetectable, but was due to a hydrogenase. Cultures grown on media with tungsten substituted for molybdenum had a high frequency of heterocysts (15%) and inactive nitrogenase after nitrogen starvation. The hydrogenase activity of these cultures was three-fold greater than the activity of non-heterocystous cultures. The effects of oxygen inhibition on hydrogen evolution by hetero-cystous cultures suggest that two pools of hydrogenase activity exist - an oxygen sensitive hydrogen evolution in vegetative cells and a relatively oxygen-resistent hydrogen evolution in heterocysts. In either case, inhibition by oxygen was reversible. Light had an inhibitory effect on net hydrogen evolution. Hydrogen production in vitro was much higher than in vivo, indicating that in vivo hydrogenase activity is limited by endogenous reductant supply.

2001 ◽  
Vol 183 (5) ◽  
pp. 1748-1754 ◽  
Author(s):  
Sylvie Saint-Amans ◽  
Laurence Girbal ◽  
Jose Andrade ◽  
Kerstin Ahrens ◽  
Philippe Soucaille

ABSTRACT The metabolism of Clostridium butyricum was manipulated at pH 6.5 and in phosphate-limited chemostat culture by changing the overall degree of reduction of the substrate using mixtures of glucose and glycerol. Cultures grown on glucose alone produced only acids (acetate, butyrate, and lactate) and a high level of hydrogen. In contrast, when glycerol was metabolized, 1,3-propanediol became the major product, the specific rate of acid formation decreased, and a low level of hydrogen was observed. Glycerol consumption was associated with the induction of (i) a glycerol dehydrogenase and a dihydroxyacetone kinase feeding glycerol into the central metabolism and (ii) an oxygen-sensitive glycerol dehydratase and an NAD-dependent 1,3-propanediol dehydrogenase involved in propanediol formation. The redirection of the electron flow from hydrogen to NADH formation was associated with a sharp decrease in the in vitro hydrogenase activity and the acetyl coenzyme A (CoA)/free CoA ratio that allows the NADH-ferredoxin oxidoreductase bidirectional enzyme to operate so as to reduce NAD in this culture. The decrease in acetate and butyrate formation was not explained by changes in the concentration of phosphotransacylases and acetate and butyrate kinases but by changes in in vivo substrate concentrations, as reflected by the sharp decrease in the acetyl-CoA/free CoA and butyryl-CoA/free CoA ratios and the sharp increase in the ATP/ADP ratio in the culture grown with glucose and glycerol compared with that in the culture grown with glucose alone. As previously reported for Clostridium acetobutylicum (L. Girbal, I. Vasconcelos, and P. Soucaille, J. Bacteriol. 176:6146–6147, 1994), the transmembrane pH of C. butyricum is inverted (more acidic inside) when the in vivo activity of hydrogenase is decreased (cultures grown on glucose-glycerol mixture). For both cultures, the stoichiometry of the H+ ATPase was shown to remain constant and equal to 3 protons exported per molecule of ATP consumed.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1141
Author(s):  
Kae Nakamura ◽  
Nobuhisa Yoshikawa ◽  
Yuko Mizuno ◽  
Miwa Ito ◽  
Hiromasa Tanaka ◽  
...  

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. The major cause of EOC’s lethality is that intraperitoneal recurrence occurs with high frequency due to occult metastasis. We had demonstrated that plasma-activated medium (PAM) exerts a metastasis-inhibitory effect on ovarian cancer in vitro and in vivo. Here we investigated how PAM inhibits intraperitoneal metastasis. We studied PAM’s inhibition of micro-dissemination onto the omentum by performing in vivo imaging in combination with a sequential histological analysis. The results revealed that PAM induced macrophage infiltration into the disseminated lesion. The iNOS-positive signal was co-localized at the macrophages in the existing lesion, indicating that PAM might induce M1-type macrophages. This may be another mechanism of the antitumor effect through a PAM-evoked immune response. Intraperitoneal lavage with plasma-activated lactate Ringer’s solution (PAL) significantly improved the overall survival rate in an ovarian cancer mouse model. Our results demonstrated the efficiency and practicality of aqueous plasma for clinical applications.


2018 ◽  
Vol 84 (16) ◽  
Author(s):  
Jace Natzke ◽  
Jesse Noar ◽  
José M. Bruno-Bárcena

ABSTRACTAzotobacter vinelandiiselectively utilizes three types of nitrogenase (molybdenum, vanadium, and iron only) to fix N2, with their expression regulated by the presence or absence of different metal cofactors in its environment. Each alternative nitrogenase isoenzyme is predicted to have different electron flux requirements based onin vitromeasurements, with the molybdenum nitrogenase requiring the lowest flux and the iron-only nitrogenase requiring the highest. Here, prior characterized strains, derepressed in nitrogenase synthesis and also deficient in uptake hydrogenase, were further modified to generate new mutants lacking the ability to produce poly-β-hydroxybutyrate (PHB). PHB is a storage polymer generated under oxygen-limiting conditions and can represent up to 70% of the cells' dry weight. The absence of such granules facilitated the study of relationships between catalytic biomass and product molar yields across different adaptive respiration conditions. The released hydrogen gas observed during growth, due to the inability of the mutants to recapture hydrogen, allowed for direct monitoring ofin vivonitrogenase activity for each isoenzyme. The data presented here show that increasing oxygen exposure limits equally thein vivoactivities of all nitrogenase isoenzymes, while under comparative conditions, the Mo nitrogenase enzyme evolves more hydrogen per unit of biomass than the alternative isoenzymes.IMPORTANCEA. vinelandiihas been a focus of intense research for over 100 years. It has been investigated for a variety of functions, including agricultural fertilization and hydrogen production. All of these endeavors are centered aroundA. vinelandii's ability to fix nitrogen aerobically using three nitrogenase isoenzymes. The majority of research up to this point has targetedin vitromeasurements of the molybdenum nitrogenase, and robust data contrasting how oxygen impacts thein vivoactivity of each nitrogenase isoenzyme are lacking. This article aims to providein vivonitrogenase activity data using a real-time evaluation of hydrogen gas released by derepressed nitrogenase mutants lacking an uptake hydrogenase and PHB accumulation.


1973 ◽  
Vol 30 (02) ◽  
pp. 315-326
Author(s):  
J. Heinz Joist ◽  
Jean-Pierre Cazenave ◽  
J. Fraser Mustard

SummarySodium pentobarbital (SPB) and three other barbituric acid derivatives were found to inhibit platelet function in vitro. SPB had no effect on the primary response to ADP of platelets in platelet-rich plasma (PRP) or washed platelets but inhibited secondary aggregation induced by ADP in human PRP. The drug inhibited both phases of aggregation induced by epinephrine. SPB suppressed aggregation and the release reaction induced by collagen or low concentrations of thrombin, and platelet adherence to collagen-coated glass tubes. The inhibition by SPB of platelet aggregation was readily reversible and isotopically labeled SPB did not become firmly bound to platelets. No inhibitory effect on platelet aggregation induced by ADP, collagen, or thrombin could be detected in PRP obtained from rabbits after induction of SPB-anesthesia.


1976 ◽  
Vol 36 (02) ◽  
pp. 401-410 ◽  
Author(s):  
Buichi Fujttani ◽  
Toshimichi Tsuboi ◽  
Kazuko Takeno ◽  
Kouichi Yoshida ◽  
Masanao Shimizu

SummaryThe differences among human, rabbit and guinea-pig platelet adhesiveness as for inhibitions by adenosine, dipyridamole, chlorpromazine and acetylsalicylic acid are described, and the influence of measurement conditions on platelet adhesiveness is also reported. Platelet adhesiveness of human and animal species decreased with an increase of heparin concentrations and an increase of flow rate of blood passing through a glass bead column. Human and rabbit platelet adhesiveness was inhibited in vitro by adenosine, dipyridamole and chlorpromazine, but not by acetylsalicylic acid. On the other hand, guinea-pig platelet adhesiveness was inhibited by the four drugs including acetylsalicylic acid. In in vivo study, adenosine, dipyridamole and chlorpromazine inhibited platelet adhesiveness in rabbits and guinea-pigs. Acetylsalicylic acid showed the inhibitory effect in guinea-pigs, but not in rabbits.


2018 ◽  
Vol 15 (6) ◽  
pp. 531-543 ◽  
Author(s):  
Dominik Szwajgier ◽  
Ewa Baranowska-Wojcik ◽  
Kamila Borowiec

Numerous authors have provided evidence regarding the beneficial effects of phenolic acids and their derivatives against Alzheimer's disease (AD). In this review, the role of phenolic acids as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) is discussed, including the structure-activity relationship. In addition, the inhibitory effect of phenolic acids on the formation of amyloid β-peptide (Aβ) fibrils is presented. We also cover the in vitro, ex vivo, and in vivo studies concerning the prevention and treatment of the cognitive enhancement.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Ying Liu ◽  
Wenjie Liu ◽  
Ziqiang Yu ◽  
Yan Zhang ◽  
Yinghua Li ◽  
...  

AbstractBromodomain-containing protein 4 (BRD4) has emerged as a promising treatment target for bone-related disorders. (+)-JQ1, a thienotriazolodiazepine compound, has been shown to inhibit pro-osteoclastic activity in a BRD4-dependent approach and impede bone loss caused by ovariectomy (OVX) in vivo. However, clinical trials of (+)-JQ1 are limited because of its poor druggability. In this study, we synthesized a new (+)-JQ1 derivative differing in structure and chirality. One such derivative, (+)-ND, exhibited higher solubility and excellent inhibitory activity against BRD4 compared with its analogue (+)-JQ1. Interestingly, (-)-JQ1 and (-)-ND exhibited low anti-proliferative activity and had no significant inhibitory effect on RANKL-induced osteoclastogenesis as compared with (+)-JQ1 and (+)-ND, suggesting the importance of chirality in the biological activity of compounds. Among these compounds, (+)-ND displayed the most prominent inhibitory effect on RANKL-induced osteoclastogenesis. Moreover, (+)-ND could inhibit osteoclast-specific gene expression, F‐actin ring generation, and bone resorption in vitro and prevent bone loss in OVX mice. Collectively, these findings indicated that (+)-ND represses RANKL‐stimulated osteoclastogenesis and averts OVX-triggered osteoporosis by suppressing MAPK and NF-κB signalling cascades, suggesting that it may be a prospective candidate for osteoporosis treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Hayato Mizuta ◽  
Koutaroh Okada ◽  
Mitsugu Araki ◽  
Jun Adachi ◽  
Ai Takemoto ◽  
...  

AbstractALK gene rearrangement was observed in 3%–5% of non-small cell lung cancer patients, and multiple ALK-tyrosine kinase inhibitors (TKIs) have been sequentially used. Multiple ALK-TKI resistance mutations have been identified from the patients, and several compound mutations, such as I1171N + F1174I or I1171N + L1198H are resistant to all the approved ALK-TKIs. In this study, we found that gilteritinib has an inhibitory effect on ALK-TKI–resistant single mutants and I1171N compound mutants in vitro and in vivo. Surprisingly, EML4-ALK I1171N + F1174I compound mutant-expressing tumors were not completely shrunk but regrew within a short period of time after alectinib or lorlatinib treatment. However, the relapsed tumor was markedly shrunk after switching to the gilteritinib in vivo model. In addition, gilteritinib was effective against NTRK-rearranged cancers including entrectinib-resistant NTRK1 G667C-mutant and ROS1 fusion-positive cancer.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Peng-Fei Fu ◽  
Xuan Cheng ◽  
Bing-Qian Su ◽  
Li-Fang Duan ◽  
Cong-Rong Wang ◽  
...  

AbstractPseudorabies, caused by pseudorabies virus (PRV) variants, has broken out among commercial PRV vaccine-immunized swine herds and resulted in major economic losses to the pig industry in China since late 2011. However, the mechanism of virulence enhancement of variant PRV is currently unclear. Here, a recombinant PRV (rPRV HN1201-EGFP-Luc) with stable expression of enhanced green fluorescent protein (EGFP) and firefly luciferase as a double reporter virus was constructed on the basis of the PRV variant HN1201 through CRISPR/Cas9 gene-editing technology coupled with two sgRNAs. The biological characteristics of the recombinant virus and its lethality to mice were similar to those of the parental strain and displayed a stable viral titre and luciferase activity through 20 passages. Moreover, bioluminescence signals were detected in mice at 12 h after rPRV HN1201-EGFP-Luc infection. Using the double reporter PRV, we also found that 25-hydroxycholesterol had a significant inhibitory effect on PRV both in vivo and in vitro. These results suggested that the double reporter PRV based on PRV variant HN1201 should be an excellent tool for basic virology studies and evaluating antiviral agents.


Sign in / Sign up

Export Citation Format

Share Document