Free Amino Acids in Cytosol of Rat Brain after Intraventricular Administration of 5,6-Dihydroxytryptamine and 6-Hydroxydopamine

1987 ◽  
Vol 42 (5) ◽  
pp. 637-640
Author(s):  
Janusz Konecki ◽  
Janusz Gabrys ◽  
Ryszard Brus ◽  
Ryszard Szkilnik ◽  
Jashovam Shani

Abstract Levels of 24 free amino acids were estimated in the brain after administration of 5,6-dihydroxy-tryptamine and 6-hydroxydopamine into the lateral brain ventricles of male Wistar rats. These neurotransmitters caused serotoninectomy and sympathectomy in the diencephalon, striatum, brain stem and medulla, thalamus and hypothalamus, cerebral cortex and cerebellum. The most abundant amino acids in these brain structures were: glutamic acid, serine, aspartic acid, cystine, gamma-aminobutyric acid, glycine, tryptophan and alanine. We detected and quantified changes in the levels of these and other amino acids in the investigated regions of the rat central nervous system, under the influence of these two neurotransmitters.

1966 ◽  
Vol 101 (3) ◽  
pp. 591-597 ◽  
Author(s):  
R M O'Neal ◽  
R E Koeppe ◽  
E I Williams

1. Free glutamic acid, aspartic acid, glutamic acid from glutamine and, in some instances, the glutamic acid from glutathione and the aspartic acid from N-acetyl-aspartic acid were isolated from the brains of sheep and assayed for radioactivity after intravenous injection of [2-(14)C]glucose, [1-(14)C]acetate, [1-(14)C]butyrate or [2-(14)C]propionate. These brain components were also isolated and analysed from rats that had been given [2-(14)C]propionate. The results indicate that, as in rat brain, glucose is by far the best precursor of the free amino acids of sheep brain. 2. Degradation of the glutamate of brain yielded labelling patterns consistent with the proposal that the major route of pyruvate metabolism in brain is via acetyl-CoA, and that the short-chain fatty acids enter the brain without prior metabolism by other tissue and are metabolized in brain via the tricarboxylic acid cycle. 3. When labelled glucose was used as a precursor, glutamate always had a higher specific activity than glutamine; when labelled fatty acids were used, the reverse was true. These findings add support and complexity to the concept of the metabolic; compartmentation' of the free amino acids of brain. 4. The results from experiments with labelled propionate strongly suggest that brain metabolizes propionate via succinate and that this metabolic route may be a limited but important source of dicarboxylic acids in the brain.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1637
Author(s):  
Quintino Reis de Araujo ◽  
Guilherme Amorim Homem de Abreu Loureiro ◽  
Cid Edson Mendonça Póvoas ◽  
Douglas Steinmacher ◽  
Stephane Sacramento de Almeida ◽  
...  

Free amino acids in cacao beans are important precursors to the aroma and flavor of chocolate. In this research, we used inferential and explanatory statistical techniques to verify the effect of different edaphic crop conditions on the free amino acid profile of PH-16 dry cacao beans. The decreasing order of free amino acids in PH-16 dry cacao beans is leucine, phenylalanine, glutamic acid, alanine, asparagine, tyrosine, gamma-aminobutyric acid, valine, isoleucine, glutamine, lysine, aspartic acid, serine, tryptophan, threonine, glycine. With the exception of lysine, no other free amino acid showed a significant difference between means of different edaphic conditions under the ANOVA F-test. The hydrophobic free amino acids provided the largest contribution to the explained variance with 58.01% of the first dimension of the principal component analysis. Glutamic acid stands out in the second dimension with 13.09%. Due to the stability of the biochemical profile of free amino acids in this clonal variety, it is recommended that cacao producers consider the genotype as the primary source of variation in the quality of cacao beans and ultimately the chocolate to be produced.


Amino Acids ◽  
2008 ◽  
Vol 36 (2) ◽  
pp. 303-308 ◽  
Author(s):  
M. Sato ◽  
S. Tomonaga ◽  
D. M. Denbow ◽  
M. Furuse

2010 ◽  
Vol 58 (2) ◽  
pp. 1208-1213 ◽  
Author(s):  
Shigeaki Ueno ◽  
Toru Shigematsu ◽  
Takae Watanabe ◽  
Kanako Nakajima ◽  
Mina Murakami ◽  
...  

1988 ◽  
Vol 94 (1-2) ◽  
pp. 182-186 ◽  
Author(s):  
Juha O. Rinne ◽  
Toivo Halonen ◽  
Paavo J. Riekkinen ◽  
Urpo K. Rinne

Sign in / Sign up

Export Citation Format

Share Document