Aspterric Acid and 6-Hydroxymellein, Inhibitors of Pollen Development in Arabidopsis thaliana, Produced by Aspergillus terreus

2002 ◽  
Vol 57 (5-6) ◽  
pp. 459-464 ◽  
Author(s):  
Atsumi Shimada ◽  
Miyako Kusano ◽  
Sumiyo Takeuchi ◽  
Shozo Fujioka ◽  
Tomohisa Inokuchi ◽  
...  

Aspterric acid (1) and 6-hydroxymellein (2), inhibitors of pollen development in Arabidopsis thaliana, have been isolated fromthe fungus Aspergillus terreus. 1 and 2 inhibited the pollen development at concentrations of 38 and 52 μᴍ, respectively. The microscopic examination of pollen development suggested that the inhibition by the treatment with 1 caused at meiosis and the inhibition by the treatment with 2 caused at microspore stage. 1 and 2 could be useful agents for the molecular investigation of anther and pollen development in higher plants.

2019 ◽  
Author(s):  
Zhenxing Wang ◽  
Nicolas Butel ◽  
Juan Santos-González ◽  
Filipe Borges ◽  
Jun Yi ◽  
...  

AbstractIn Arabidopsis thaliana, the DNA-dependent RNA polymerase IV (Pol IV) is required for the formation of transposable element (TE)-derived small RNA (sRNA) transcripts. These transcripts are processed by DICER-LIKE 3 into 24-nt small interfering RNAs (siRNAs) that guide RNA-dependent DNA methylation. In the pollen grain, Pol IV is also required for the accumulation of 21/22-nt epigenetically-activated siRNAs (easiRNAs) that likely silence TEs by post-transcriptional mechanisms. Despite this proposed functional role, loss of Pol IV function in Arabidopsis does not cause a discernable pollen defect. Here, we show that loss of NRPD1, encoding the largest subunit of Pol IV in the Brassicaceae Capsella rubella, causes post-meiotic arrest of pollen development at the microspore stage. As in Arabidopsis, all TE-derived siRNAs were depleted in Capsella nrpd1 microspores. In wild-type background, we found that the same TEs produced 21/22-nt and 24-nt siRNAs, leading us to propose that Pol IV is generating the direct precursors for 21-24-nt siRNAs, which are targeted by different DICERs. Arrest of Capsella nrpd1 microspores was accompanied by deregulation of genes targeted by Pol IV-dependent siRNAs. The distance of TEs to genes was much closer in Capsella rubella compared to Arabidopsis thaliana, providing a possible explanation for the essential role of Pol IV for pollen development in Capsella. Our study in Capsella uncovers a functional requirement of Pol IV in microspores, emphasizing the relevance of investigating different plant models.One-sentence summaryLoss of Polymerase IV function in Capsella rubella causes microspore arrest, revealing an important functional role of Polymerase IV during pollen development.The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Claudia Kohler ([email protected])


2020 ◽  
Vol 36 (1) ◽  
pp. 36-43
Author(s):  
I.O. Konovalova ◽  
T.N. Kudelina ◽  
S.O. Smolyanina ◽  
A.I. Lilienberg ◽  
T.N. Bibikova

A new technique for Arabidopsis thaliana cultivation has been proposed that combines the use of a phytogel-based nutrient medium and a hydrophilic membrane of hydrate cellulose film, separating the root system of the plant from the medium thickness. Growth rates of both main and lateral roots were faster in the plants cultivated on the surface of hydrate cellulose film than in the plants grown in the phytogel volume. The location of the root system on the surface of the transparent hydrate film simplifies its observation and analysis and facilitates plant transplantation with preservation of the root system configuration. The proposed technique allowed us to first assess the effect of exogenous auxin on the growth of lateral roots at the 5-6 developmental stage. methods to study plant root systems, hydrate cellulose film, A. thaliana, lateral roots, differential root growth rate, auxin The work was financially supported by the Russian Foundation for Basic Research (Project Bel_mol_a 19-54-04015) and the basic topic of the Russian Academy of Sciences - IBMP RAS «Regularities of the Influence of Extreme Environmental Factors on the Processes of Cultivation of Higher Plants and the Development of Japanese Quail Tissues at Different Stages of its Ontogenesis under the Conditions of Regenerative Life Support Systems».


Development ◽  
1997 ◽  
Vol 124 (13) ◽  
pp. 2645-2657 ◽  
Author(s):  
M. Spielman ◽  
D. Preuss ◽  
F.L. Li ◽  
W.E. Browne ◽  
R.J. Scott ◽  
...  

In flowering plants, male meiosis occurs in the microsporocyte to produce four microspores, each of which develops into a pollen grain. Here we describe four mutant alleles of TETRASPORE (TES), a gene essential for microsporocyte cytokinesis in Arabidopsis thaliana. Following failure of male meiotic cytokinesis in tes mutants, all four microspore nuclei remain within the same cytoplasm, with some completing their developmental programmes to form functional pollen nuclei. Both of the mitotic divisions seen in normal pollen development take place in tes mutants, including the asymmetric division required for the differentiation of gametes; some tes grains perform multiple asymmetric divisions in the same cytoplasm. tes pollen shows a variety of abnormalities subsequent to the cytokinetic defect, including fusion of nuclei, formation of ectopic internal walls, and disruptions to external wall patterning. In addition, ovules fertilized by tes pollen often abort, possibly because of excess paternal genomes in the endosperm. Thus tes mutants not only reveal a gene specific to male meiosis, but aid investigation of a wide range of processes in pollen development and function.


2018 ◽  
Vol 115 (45) ◽  
pp. E10778-E10787 ◽  
Author(s):  
Chia Pao Voon ◽  
Xiaoqian Guan ◽  
Yuzhe Sun ◽  
Abira Sahu ◽  
May Ngor Chan ◽  
...  

Matching ATP:NADPH provision and consumption in the chloroplast is a prerequisite for efficient photosynthesis. In terms of ATP:NADPH ratio, the amount of ATP generated from the linear electron flow does not meet the demand of the Calvin–Benson–Bassham (CBB) cycle. Several different mechanisms to increase ATP availability have evolved, including cyclic electron flow in higher plants and the direct import of mitochondrial-derived ATP in diatoms. By imaging a fluorescent ATP sensor protein expressed in livingArabidopsis thalianaseedlings, we found that MgATP2−concentrations were lower in the stroma of mature chloroplasts than in the cytosol, and exogenous ATP was able to enter chloroplasts isolated from 4- and 5-day-old seedlings, but not chloroplasts isolated from 10- or 20-day-old photosynthetic tissues. This observation is in line with the previous finding that the expression of chloroplast nucleotide transporters (NTTs) inArabidopsismesophyll is limited to very young seedlings. Employing a combination of photosynthetic and respiratory inhibitors with compartment-specific imaging of ATP, we corroborate the dependency of stromal ATP production on mitochondrial dissipation of photosynthetic reductant. Our data suggest that, during illumination, the provision and consumption of ATP:NADPH in chloroplasts can be balanced by exporting excess reductants rather than importing ATP from the cytosol.


PLoS ONE ◽  
2009 ◽  
Vol 4 (3) ◽  
pp. e4780 ◽  
Author(s):  
Andi Gusti ◽  
Nicolas Baumberger ◽  
Moritz Nowack ◽  
Stefan Pusch ◽  
Herfried Eisler ◽  
...  

1983 ◽  
Vol 41 (1) ◽  
pp. 57-68 ◽  
Author(s):  
M. Koornneef ◽  
J. Van Eden ◽  
C. J. Hanhart ◽  
A. M. M. De Jongh

SUMMARYNon-germinating gibberellin (GA) responsive mutants are a powerful tool to study genetic fine structure in higher plants. Nine alleles (EMS-and fast neutron-induced) of the ga-1 locus of Arabidopsis thaliana were tested in a complete half-diallel. No wild type ‘recombinants’ were found in the selfed progeny of 9 homoallelic combinations (in total 3 × 105 plants); in the progenies from the 36 selfed hetero allelics the wild type frequency ranged from zero to 6·6 × 10−4. These frequencies allowed the construction of an internally consistent map for five different sites representing eight alleles. The ninth allele covered three sites and thus behaved like an intragenic deletion. The estimate of the total genetic length of the ga-1 locus was 0·07 cM. The order of the sites was also clearly reflected by the association with proximal outside markers. On the assumption that wild type gametes predominantly arise from reciprocal events, it was shown that a cross-over within the ga-1 locus leads to positive interference in the adjacent region.The results are discussed with respect to the mutagen used, the frequencies found in other plant and Drosophila genes, and the possible occurrence of gene conversion.


2000 ◽  
Vol 11 (8) ◽  
pp. 2733-2741 ◽  
Author(s):  
Eva Chytilova ◽  
Jiri Macas ◽  
Elwira Sliwinska ◽  
Susanne M. Rafelski ◽  
Georgina M. Lambert ◽  
...  

The nucleus is a definitive feature of eukaryotic cells, comprising twin bilamellar membranes, the inner and outer nuclear membranes, which separate the nucleoplasmic and cytoplasmic compartments. Nuclear pores, complex macromolecular assemblies that connect the two membranes, mediate communication between these compartments. To explore the morphology, topology, and dynamics of nuclei within living plant cells, we have developed a novel method of confocal laser scanning fluorescence microscopy under time-lapse conditions. This is used for the examination of the transgenic expression in Arabidopsis thaliana of a chimeric protein, comprising the GFP (Green-Fluorescent Protein of Aequorea victoria) translationally fused to an effective nuclear localization signal (NLS) and to β-glucuronidase (GUS) from E. coli. This large protein is targeted to the nucleus and accumulates exclusively within the nucleoplasm.  This article provides online access to movies that illustrate the remarkable and unusual properties displayed by the nuclei, including polymorphic shape changes and rapid, long-distance, intracellular movement. Movement is mediated by actin but not by tubulin; it therefore appears distinct from mechanisms of nuclear positioning and migration that have been reported for eukaryotes. The GFP-based assay is simple and of general applicability. It will be interesting to establish whether the novel type of dynamic behavior reported here, for higher plants, is observed in other eukaryotic organisms.


2020 ◽  
Vol 21 (6) ◽  
pp. 2018 ◽  
Author(s):  
Ting Zou ◽  
Dan Zhou ◽  
Wenjie Li ◽  
Guoqiang Yuan ◽  
Yang Tao ◽  
...  

Pollen development plays crucial roles in the life cycle of higher plants. Here we characterized a rice mutant with complete male-sterile phenotype, pollen-less 1 (pl1). pl1 exhibited smaller anthers with arrested pollen development, absent Ubisch bodies, necrosis-like tapetal hypertrophy, and smooth anther cuticular surface. Molecular mapping revealed a synonymous mutation in the fourth exon of PL1 co-segregated with the mutant phenotype. This mutation disrupts the exon-intron splice junction in PL1, generating aberrant mRNA species and truncated proteins. PL1 is highly expressed in the tapetal cells of developing anther, and its protein is co-localized with plasma membrane (PM) and endoplasmic reticulum (ER) signal. PL1 encodes an integrin-α FG-GAP repeat-containing protein, which has seven β-sheets and putative Ca2+-binding motifs and is broadly conserved in terrestrial plants. Our findings therefore provide insights into both the role of integrin-α FG-GAP repeat-containing protein in rice male fertility and the influence of exonic mutation on intronic splice donor site selection.


Sign in / Sign up

Export Citation Format

Share Document