Biodegrader Metabolic Expansion during Polyaromatic Hydrocarbons Rhizoremediation

2005 ◽  
Vol 60 (3-4) ◽  
pp. 331-339 ◽  
Author(s):  
Clayton L. Rugha ◽  
Endang Susilawati ◽  
Alexandra N. Kravchenko ◽  
John C. Thomas

Abstract Root-microbe interactions are considered to be the primary process of polyaromatic hydrocarbon (PAH) phytoremediation, since bacterial degradation has been shown to be the dominant pathway for environmental PAH dissipation. However, the precise mechanisms driving PAH rhizostimulation symbiosis remain largely unresolved. In this study, we assessed PAH degrading bacterial abundance in contaminated soils planted with 18 different native Michigan plant species. Phenanthrene metabolism assays suggested that each plant species differentially influenced the relative abundance of PAH biodegraders, though they generally were observed to increase heterotrophic and biodegradative cell numbers relative to unplanted soils. Further study of > 1800 phenanthrene degrading isolates indicated that most of the tested plant species stimulated biodegradation of a broader range of PAH compounds relative to the unplanted soil bacterial consortia. These observations suggest that a principal contribution of planted systems for PAH bioremediation may be via expanded metabolic range of the rhizosphere bacterial community.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Blanka Vrchotová ◽  
Petra Lovecká ◽  
Milena Dražková ◽  
Martina Macková ◽  
Tomas Macek

Degradation of chlorobenzoic acids (e.g., products of microbial degradation of PCB) by strains of microorganisms isolated from PCB contaminated soils was assessed. From seven bulk-soil isolates two strains unique in ability to degrade a wider range of chlorobenzoic acids than others were selected, individually and even in a complex mixture of 11 different chlorobenzoic acids. Such a feature is lacking in most tested degraders. To investigate the influence of vegetation on chlorobenzoic acids degraders, root exudates of two plant species known for supporting PCB degradation in soil were tested. While with individual chlorobenzoic acids the presence of plant exudates leads to a decrease of degradation yield, in case of a mixture of chlorobenzoic acids either a change in bacterial degradation specificity, associated with 3- and 4-chlorobenzoic acid, or an extension of the spectrum of degraded chlorobenzoic acids was observed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1769
Author(s):  
María Noelia Jiménez ◽  
Gianluigi Bacchetta ◽  
Francisco Bruno Navarro ◽  
Mauro Casti ◽  
Emilia Fernández-Ondoño

The use of plant species to stabilize and accumulate trace elements in contaminated soils is considered of great usefulness given the difficulty of decontaminating large areas subjected to mining for long periods. In this work, the bioaccumulation of trace elements is studied by relating the concentrations in leaves and roots of three plants of Mediterranean distribution (Dittrichia viscosa, Cistus salviifolius, Euphorbia pithyusa subsp. cupanii) with the concentrations of trace elements in contaminated and uncontaminated soils. Furthermore, in the case of D. viscosa, to know the concentration of each element by biomass, the pool of trace elements was determined both in the aerial part and in the roots. The bioaccumulation factor was not high enough in any of the species studied to be considered as phytoextractors. However, species like the ones studied in this work that live on soils with a wide range of concentration of trace elements and that develop a considerable biomass could be considered for stabilization of contaminated soils. The plant species studied in this work are good candidates for gentle-remediation options in the polluted Mediterranean.


2021 ◽  
Vol 232 (7) ◽  
Author(s):  
N. Matanzas ◽  
E. Afif ◽  
T. E. Díaz ◽  
J. R. Gallego

AbstractPhytomanagement techniques using native species allow the recovery of contaminated soils at low cost and circumvent the ecological risks associated with the use of non-native species. In this context, a paradigmatic brownfield megasite highly contaminated by As and Pb was sampled in order to analyze soil–plant interactions and identify plant species with phytoremediation potential. A survey was first carried out in a 20-ha area to obtain an inventory of species growing spontaneously throughout the site. We then performed another survey in the most polluted sub-area (1 ha) within the site. Pseudototal concentrations of contaminants in the soil, aerial parts of the plants, and roots were measured by ICP-MS. A detailed habitat classification was done, and a specific index of coverage was applied by means of a 1-year quadrat study in various sampling stations. Results converged in the selection of six herbaceous species (Dysphania botrys, Lotus corniculatus, Lotus hispidus, Plantago lanceolata, Trifolium repens, Medicago lupulina). All of these plants are fast-growing, thereby making them suitable for use in phytostabilization strategies. Furthermore, they are all easy to grow and propagate and are generally self-sustaining. All six plants showed accumulation factors below 1, thus revealing them as pseudomethallophytes and excluders. However, L. hispidus and M. lupulina showed translocation capacity and are considered worthy of further study.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1750
Author(s):  
María Pilar Bernal ◽  
Donatella Grippi ◽  
Rafael Clemente

Phytomanagement of trace element-contaminated soils combines sustainable soil remediation with the use of plant biomass for different applications. Consequently, phytostabilization using plant species useful for bioenergy production has recently received increasing attention. However, the water requirement of most of these species is a limitation for their use under Mediterranean climatic conditions. In this work, eight plant species growing naturally in mine soils contaminated by trace elements were evaluated for their use as bioenergy crops using thermochemical (combustion) and biochemical (anaerobic digestion) methods. The higher heating values of the biomass of the plants studied were all within a narrow range (16.03–18.75 MJ kg−1), while their biochemical methane potentials ranged from 86.0 to 227.4 mL CH4 (g VS)−1. The anaerobic degradation was not influenced by the presence of trace elements in the plants, but the mineral content (mainly Na) negatively affected the potential thermal energy released by combustion (HHV). The highest annual energy yields from biogas or combustion could be obtained by the cultivation of Phragmites australis and Arundo donax, followed by Piptatherum miliaceum. Both options can be considered to be suitable final destinations for the biomass obtained in the phytostabilization of trace element-contaminated soils and may contribute to the implementation of these remediation techniques in Mediterranean areas.


2020 ◽  
Vol 17 (4) ◽  
pp. 314
Author(s):  
Ling Li ◽  
Lu Liao ◽  
Yuhong Fan ◽  
Han Tu ◽  
Shui Zhang ◽  
...  

Environmental contextPhytoremediation requires an understanding of bioconcentration and translocation processes that determine behaviour and fate of potentially toxic elements. We studied the distribution of antimony and arsenic in terrestrial and aquatic soil-plant systems in an antimony ore zone. We found that the common climbing plant Kudzu (Pueraria lobata) is suitable for phyto-stabilisation of antimony-bearing tailings, while tiger grass (Thysanolaena maxima) was able to extract antimony and arsenic from contaminated soils. AbstractAntimony (Sb) pollution is a major environmental issue in China. Many historical abandoned tailings have released high concentrations of Sb and its associated element arsenic (As) to surrounding environments. This has prompted the need to understand accumulation and translocation processes that determine the behaviour and fate of Sb and As in contaminated soil–plant systems and to identify suitable plant species for phytoremediation. Here we investigate distribution of Sb and As in terrestrial and aquatic dominant plant species and associated soils, all of which are naturally found in an Sb ore concentration area in south-west China. Total Sb and As concentrations were measured by inductively coupled plasma mass spectrometry (ICP-MS). The percentage of soluble Sb and As in the total concentrations were determined; the results showed that the basic soil environment facilitates the release of Sb and As from contaminated soils, and that Sb has higher mobility than As. Bioconcentration factor (BCF) and translocation factor (TF) were used for evaluating the ability of plants to accumulate and transport Sb and As, respectively. The results indicated that all selected plant species have the potential to tolerate high concentrations of Sb and As. Consequently, this study suggested that Pueraria lobata (PL) can be used as the preferred species for phytostabilisation of abandoned Sb-bearing tailings, given that PL has well-developed roots and lush leaf tissues and the ability to translocate Sb from roots to aboveground parts. Thysanolaena maxima (TM) is suitable for phyto-extraction of Sb and As in contaminated soils.


2019 ◽  
Vol 65 (No. 9) ◽  
pp. 463-469 ◽  
Author(s):  
Jane Alexander Ruley ◽  
John Baptist Tumuhairwe ◽  
Alice Amoding ◽  
Emmanuel Opolot ◽  
Hannington Oryem-Origa ◽  
...  

Hydrocarbon contaminants have become a global concern due to their long-term adverse effects on soil ecosystems and human health. Successful implementation of phytoremediation to clean up hydrocarbon contaminants requires the identification of the most effective remediation plant species. Twelve native plant species of the Sudd Wetland in South Sudan were evaluated for their potential application as phytoremediators. The treatments included six total petroleum hydrocarbon (TPH) concentrations of 0, 25, 50, 75, 100 and 125 g/kg soil. The twelve native plant species tested were: Sorghum arundinaceum Desv., Oryza longistaminata A. Chev. & Roehrich, Hyparrhenia rufa Nees, Abelmoschus ficulneus L., Gossypium barbadense L., Nicotiana tabacum L., Sorghum bicolour L. Moench, Eleusine coracana Gaertn., Capsicum frutescens L., Zea mays L., Tithonia diversifolia Hemsl. and Medicago sativa L. Significant differences in phytoremediation rates were observed amongst the treatments with exception of the 125 g/kg soil concentration of hydrocarbon that was lethal to all the plant species. Over 50% TPH reduction in the 75 g/kg soil concentration was observed in contaminated soil phytoremediation in H. rufa, G. barbadense, O. longistaminata, T. diversifolia and S. arundinaceum, making them potential phytoremediators of hydrocarbon-contaminated soil in the Sudd-Wetland of South-Sudan.


AoB Plants ◽  
2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Betsy von Holle ◽  
Sören E Weber ◽  
David M Nickerson

Abstract Plant species ranges are expected to shift in response to climate change, however, it is unclear how species interactions will affect range shifts. Because of the potential for enemy release of invasive nonnative plant species from species-specific soil pathogens, invasive plants may be able to shift ranges more readily than native plant species. Additionally, changing climatic conditions may alter soil microbial functioning, affecting plant–microbe interactions. We evaluated the effects of site, plant–soil microbe interactions, altered climate, and their interactions on the growth and germination of three congeneric shrub species, two native to southern and central Florida (Eugenia foetida and E. axillaris), and one nonnative invasive from south America (E. uniflora). We measured germination and biomass for these plant species in growth chambers grown under live and sterile soils from two sites within their current range, and one site in their expected range, simulating current (2010) and predicted future (2050) spring growing season temperatures in the new range. Soil microbes (microscopic bacteria, fungi, viruses and other organisms) had a net negative effect on the invasive plant, E. uniflora, across all sites and temperature treatments. This negative response to soil microbes suggests that E. uniflora’s invasive success and potential for range expansion are due to other contributing factors, e.g. higher germination and growth relative to native Eugenia. The effect of soil microbes on the native species depended on the geographic provenance of the microbes, and this may influence range expansion of these native species.


Sign in / Sign up

Export Citation Format

Share Document