Two-Stage System for Micropropagation of Several Genista Plants Producing Large Amounts of Phytoestrogens

2005 ◽  
Vol 60 (7-8) ◽  
pp. 557-566 ◽  
Author(s):  
Maria Łuczkiewicz ◽  
Arkadiusz Piotrowski

A two-stage method for in vitro propagation of six Genista species from shoot tips was developed. Multiple microshoot cultures were obtained by growing the shoot tip explants on Schenk and Hildebrandt medium supplemented with 9.84 μm 6-(γ,γ-dimethylallylamino)- purine and 0.99 μm thidiazuron. The best shoot elongation was achieved on Schenk and Hildebrandt medium containing 4.92 μm indole-3-butyric acid. The rooting of shoots brought best effects (100%) on Schenk and Hildebrandt medium with 2.68 μm 1-naphthaleneacetic acid. HPLC analysis indicated that six-month-old regenerated plants as well as the herb of intact plants produced a rich set of simple flavones (derivatives of luteolin and apigenin) and isoflavones (derivatives of genistein, daidzein, formononetin and biochanin A). Multiple microshoot cultures of all species produced no simple flavones at all. In vitro shoots accumulated selectively a rich group of phytoestrogens in the form of aglucones, glucosides and esters (derivatives of genistein and daidzein). Cultures obtained in vitro synthesized many times more isoflavones than the intact plants. In all shoots which were micropropagated the dominating compound was genistin (e.g. shoots of G. tinctoria D ca 3281.4 mg per 100 g dry weight). Possible influence of tissue differentiation on isoflavone content under in vitro and in vivo conditions is discussed.

Author(s):  
Ya-Nan Li ◽  
Ni Ning ◽  
Lei Song ◽  
Yun Geng ◽  
Jun-Ting Fan ◽  
...  

Background: Deoxypodophyllotoxin, isolated from theTraditional Chinese Medicine Anthriscus sylvestris, is well-known because of its significant antitumor activity with strong toxicity in vitro and in vivo. Objective: In this article, we synthesized a series of deoxypodophyllotoxin derivatives, and evaluated their antitumor effectiveness.Methods:The anti tumor activity of deoxypodophyllotoxin derivatives was investigated by the MTT method. Apoptosis percentage was measured by flow cytometer analysis using Annexin-V-FITC. Results: The derivatives revealed obvious cytotoxicity in the MTT assay by decreasing the number of late cancer cells. The decrease of Bcl-2/Bax could be observed in MCF-7, HepG2, HT-29 andMG-63 using Annexin V-FITC. The ratio of Bcl-2/Bax in the administration group was decreased, which was determined by the ELISA kit. Conclusion: The derivatives of deoxypodophyllotoxin could induce apoptosis in tumor cell lines by influencing Bcl-2/Bax.


2014 ◽  
Vol 74 ◽  
pp. 742-750 ◽  
Author(s):  
Chengyuan Liang ◽  
Juan Xia ◽  
Dong Lei ◽  
Xiang Li ◽  
Qizheng Yao ◽  
...  

2017 ◽  
Vol 46 (21) ◽  
pp. 7005-7019 ◽  
Author(s):  
Benjamin W. J. Harper ◽  
Emanuele Petruzzella ◽  
Roman Sirota ◽  
Fernanda Fabiola Faccioli ◽  
Janice R. Aldrich-Wright ◽  
...  

Synthesis and biological evaluation in vitro and in vivo of functionalized Pt(iv) derivatives of Pt56MeSS.


2014 ◽  
Vol 40 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Zayame Vegette Pinto ◽  
Matheus Aparecido Pereira Cipriano ◽  
Amaury da Silva dos Santos ◽  
Ludwig Heinrich Pfenning ◽  
Flávia Rodrigues Alves Patrício

Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76%) showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.


2010 ◽  
Vol 76 (21) ◽  
pp. 7217-7225 ◽  
Author(s):  
Daniel P. MacEachran ◽  
M. E. Prophete ◽  
A. J. Sinskey

ABSTRACT Generally, prokaryotes store carbon as polyhydroxyalkanoate, starch, or glycogen. The Gram-positive actinomycete Rhodococcus opacus strain PD630 is noteworthy in that it stores carbon in the form of triacylglycerol (TAG). Several studies have demonstrated that R. opacus PD630 can accumulate up to 76% of its cell dry weight as TAG when grown under nitrogen-limiting conditions. While this process is well studied, the underlying molecular and biochemical mechanisms leading to TAG biosynthesis and subsequent storage are poorly understood. We designed a high-throughput genetic screening to identify genes and their products required for TAG biosynthesis and storage in R. opacus PD630. We identified a gene predicted to encode a putative heparin-binding hemagglutinin homolog, which we have termed tadA (triacylglycerol accumulation deficient), as being important for TAG accumulation. Kinetic studies of TAG accumulation in both the wild-type (WT) and mutant strains demonstrated that the tadA mutant accumulates 30 to 40% less TAG than the parental strain (WT). We observed that lipid bodies formed by the mutant strain were of a different size and shape than those of the WT. Characterization of TadA demonstrated that the protein is capable of binding heparin and of agglutinating purified lipid bodies. Finally, we observed that the TadA protein localizes to lipid bodies in R. opacus PD630 both in vivo and in vitro. Based on these data, we hypothesize that the TadA protein acts to aggregate small lipid bodies, found in cells during early stages of lipid storage, into larger lipid bodies and thus plays a key role in lipid body maturation in R. opacus PD630.


2021 ◽  
Vol 12 ◽  
Author(s):  
Liang Zhang ◽  
Yang Yang ◽  
Zhanyong Wang

Response surface technique was employed for improving the extraction of corn silk polysaccharides (CSP). Temperature, liquid-to-solid ratio, and per extraction time were all examined as separate factors. The optimal extraction parameters were determined by fitting experimental data to a second-order polynomial; a liquid-to-solid ratio of 21.5 ml/g, temperature equivalent to 88°C, and extraction time of 1.87 h. The experimental yield of the extracted polysaccharides following the application of these conditions was 4.33 ± 0.08% (dry weight), which fit quite well with the predicted value. CSP’s strong scavenging capabilities against hydroxyls, 1,1-diphenyl-2-picrylhydrazyl radicals, and superoxide anions along with its excellent reducing potential, were demonstrated in an in vitro antioxidant experiment. Meanwhile, in vivo testing revealed that CSP substantially enhanced glutathione peroxidase and superoxide dismutase activities. The Malondialdehyde levels in the liver and serum of aged mice also underwent a decrease. This study found that CSP has a substantial antioxidant potential in vitro and in vivo, suggesting that it might be used as an antioxidant in food and medicine.


Sign in / Sign up

Export Citation Format

Share Document