scholarly journals   Role of abscisic acid and drought stress on the activities of antioxidant enzymes in wheat

2012 ◽  
Vol 58 (No. 4) ◽  
pp. 181-185 ◽  
Author(s):  
A. Bano ◽  
F. Ullah ◽  
A. Nosheen

The effect of drought stress and abscisic acid (ABA) applied at tillering stage (55 days after sowing) was compared in 2 wheat cultivars differing in drought tolerance. The activities of superoxide dismutase (SOD) and peroxidase (POD) and contents of endogenous ABA in plants were measured at 3 days of drought stress in cv. Chakwal-97 (drought tolerant) and cv. Punjab-96 (drought susceptible). ABA was applied at 10<sup>&ndash;6</sup> mol/L as presowing seed treatment for 18 h. Drought tolerant cultivar has a more efficient mechanism to scavenge reactive oxygen species as shown by a significant increase in the activity of antioxidant enzyme SOD. Under drought stress, ABA significantly increased the activities of SOD and POD, showing a significant decline on rewatering. The relative water content was significantly increased by ABA priming under drought stress in both wheat cultivars. The sensitive cultivar exhibiting lower endogenous ABA content was more responsive to ABA priming. On rewatering, the magnitude of recovery from drought stress was greater in tolerant cultivar. ABA was highly effective in improving grain weight of tolerant cultivar under drought stress. &nbsp;

2009 ◽  
Vol 64 (1-2) ◽  
pp. 77-84 ◽  
Author(s):  
Hala Ezzat Mohamed ◽  
Ghada Saber M. Ismail

The changes in plant growth, transpiration rate, photosynthetic activity, plant pigments, electrolyte leakage, H2O2 content, lipid peroxidation, catalase activity and endogenous content of abscisic acid (ABA) were followed in the leaves of two wheat varieties (sakha 93 and 94) during drought stress and subsequent rehydration. Drought stress caused several inhibitory changes in the growth of both wheat varieties, particularly in sakha 94. Exogenous ABA treatment improved the growth of sakha 93 plants as indicated by a higher relative water content, transpiration rate and lower electrolyte leakage and also enhanced the growth during the recovery period. Such improvement may be the result of the induction of enzymatic (catalase) and non-enzymatic (carotenoid) systems. ABA treatment did not ameliorate the negative effect of drought on the growth of sakha 94.


1975 ◽  
Vol 53 (24) ◽  
pp. 3041-3050 ◽  
Author(s):  
C. H. A. Little

In experiments with attached and detached shoots of balsam fir, Abies balsamea L., synthetic (±)abscisic acid (ABA) (1) reduced photosynthesis and transpiration by inducing stomatal closure, (2) inhibited indoleacetic acid (IAA) - induced cambial activity in photosynthesizing and non-photosynthesizing shoots, and (3) inhibited the basipetal movement of [14C]IAA. Neither gibberellic acid nor kinetin counteracted the inhibitory effect of (±)ABA on IAA-induced cambial activity. In addition it was demonstrated that increasing the internal water stress increased the level of endogenous ABA in the phloem–cambial region of bark peelings and decreased the basipetal movement of [14C]IAA through branch sections. On the basis of these findings it is proposed that internal water stress inhibits cambial activity, partly through increasing the level of ABA; the ABA acts to decrease the provision of carbohydrates and auxin that are required for cambial growth.


2007 ◽  
Vol 145 (3) ◽  
pp. 853-862 ◽  
Author(s):  
Marina Efetova ◽  
Jürgen Zeier ◽  
Markus Riederer ◽  
Chil-Woo Lee ◽  
Nadja Stingl ◽  
...  

2009 ◽  
Vol 57 (3) ◽  
pp. 321-333 ◽  
Author(s):  
H. Moussa ◽  
S. EL-Gamal

Treatment with CdCl 2 (0, 100, 400 and 1000 μM) resulted in the inhibition of root dry biomass and root elongation and to increased Cd accumulation in the roots. These treatments also decreased the relative water content, chlorophyll content, 14 CO fixation, phosphoenol pyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase activity and abscisic acid (ABA) content, while increasing the malondialdehyde, hydrogen peroxide and free proline contents and causing changes in the chloroplast and root ultrastructure. Pretreatment of seeds with SA (500 μM) for 20 h resulted in the amelioration of these effects.


2009 ◽  
Vol 19 (4) ◽  
pp. 201-211 ◽  
Author(s):  
Andrea Andrade ◽  
Ana Vigliocco ◽  
Sergio Alemano ◽  
Daniel Alvarez ◽  
Guillermina Abdala

AbstractEleven sunflower (Helianthus annuus L.) inbred lines were evaluated in field and laboratory studies under drought and irrigation. In the field, lines B59, R419 and B67 had reduced seed and oil yield under drought, while no reduction was observed for R432, HAR4 and B71. Lines HA89, R415, R049, RHA274 and R423 presented intermediate responses. In laboratory tests, seeds of line B59 had reduced germination percentages at 200 and 400 mM mannitol, while germination of seeds of lines R432, B71, HAR4, RHA274 and HA89 was reduced only at 400 mM mannitol. Drought-sensitive B59 and drought-tolerant B71 grown under irrigation and drought conditions in the field were selected for hormone assays. Abscisic acid (ABA) and its catabolites in pericarp, embryonic axis and cotyledons of dry and germinated seeds of B59 and B71 were determined. ABA was the major component of the pericarp of dry seeds from B71 and B59 plants grown under drought. The embryonic axis of B71 dry seeds from drought-grown plants also showed high ABA content. The major findings from this study are: (1) the drought-sensitive and -tolerant lines exhibited different ABA and catabolite profiles; (2) water environment during maternal plant growth affected ABA content and the composition of catabolites in mature and germinated seeds; (3) ABA content did not affect germination performance in our conditions; and (4) the dry and germinated seed parts showed different ABA and catabolite profiles.


2021 ◽  
Vol 74 ◽  
Author(s):  
Piyaporn Phansak ◽  
Supatcharee Siriwong ◽  
Nantawan Kanawapee ◽  
Kanjana Thumanu ◽  
Wuttichai Gunnula ◽  
...  

Abstract Drought isa major constraint in many rainfed areas and affects rice yield. We aimed to characterize the physiological changes in rice in response to drought using Fourier transform infrared (FTIR) spectroscopy. Eighty rice landrace seedlings were subjected to drought in the greenhouse using a PEG 6000. Physiological parameters, including total chlorophyll content, relative water content, electrolyte leakage, and biochemical changes were evaluated. Based on the FTIR results, the landraces were divided into three main groups: tolerant, moderately tolerant, and susceptible. Principal component analysis revealed spectral differences between the control and drought stress treatment groups. Lipid, pectin, and lignin content increased after drought stress. The biochemical components of plants at different drought tolerance levels were also compared. The lipid (CH2 and CH3), lignin (C=C), pectin (C=O), and protein (C=O, N–H) contents were the highest in the drought-tolerant cultivars, followed by the moderately tolerant and susceptible cultivars, respectively. Cultivar 17 and 49 were the most tolerant, and the functional groups were identified and characterized using FTIR. Overall, these results will be useful in selecting parental cultivars for rice breeding programs.


2019 ◽  
Vol 11 (2) ◽  
pp. 266-276
Author(s):  
Kamal MIRI-HESAR ◽  
Ali DADKHODAIE ◽  
Saideh DOROSTKAR ◽  
Bahram HEIDARI

Drought stress is one of the most significant environmental factors restricting plant production all over the world. In arid and semi-arid regions where drought often causes serious problems, wheat is usually grown as a major crop and faces water stress. In order to study drought tolerance of wheat, an experiment with 34 genotypes including 11 local and commercial cultivars, 17 landraces, and six genotypes from International Maize and Wheat Improvement Center (CIMMYT) was conducted at the experimental station, School of Agriculture, Shiraz University, Iran in 2010-2011 growing season. Three different irrigation regimes (100%, 75% and 50% Field Capacity) were applied and physiological and biochemical traits were measured for which a significant difference was observed in genotypes. Under severe water stress, proline content and enzymes’ activities increased while the relative water content (RWC) and chlorophyll index decreased significantly in all genotypes. Of these indices, superoxide dismutase (SOD) and RWC were able to distinguish tolerant genotypes from sensitives. Moreover, yield index (YI) was useful in detecting tolerant genotypes. The drought susceptibility index (DSI) varied from 0.40 to 1.71 in genotypes. These results indicated that drought-tolerant genotypes could be selected based on high YI, RWC and SOD and low DSI. On the whole, the genotypes 31 (30ESWYT200), 29 (30ESWYT173) and 25 (Akbari) were identified to be tolerant and could be further used in downstream breeding programs for the improvement of wheat tolerance under water limited conditions.


1977 ◽  
Vol 4 (2) ◽  
pp. 225 ◽  
Author(s):  
RW King ◽  
LT Evans

A brief, 8-h water stress during the induction of flowering in L. temulentum reduces the flowering response, the more so the greater the stress. Water stress also affected leaf photosynthetic rate, relative water content of leaves and leaf elongation. Water stress was most inhibitory to flowering when applied during the period of high-intensity light at the beginning of the one long day. The abscisic acid (ABA) content of leaves increased up to 30-fold during the imposition of water stress and fell rapidly after stress was relieved, regardless of when the stress was imposed. The greater the stress, the higher was the level of ABA in leaves and the greater was the inhibition of flowering. The ABA content of apices also rose in response to water stress, in some cases during the stress treatment but usually 8-22 h later. Flowering was inhibited when apical ABA contents were high at the end of the long day. Although water stress may influence the flowering of plants in several ways, these experiments suggest that water stress during the long day induction of L. temulentum inhibits flowering by raising the content of ABA at the shoot apex during floral evocation.


2020 ◽  
Vol 71 (9) ◽  
pp. 2713-2722 ◽  
Author(s):  
Haicui Xie ◽  
Jianqin Shi ◽  
Fengyu Shi ◽  
Haiyun Xu ◽  
Kanglai He ◽  
...  

Abstract Plants are routinely subjected simultaneously to different abiotic and biotic stresses, such as heat, drought, and insect infestation. Plant–insect interactions in such complex stress situations are poorly understood. We evaluated the performance of the grain aphid (Sitobion avenae) in wheat (Triticum aestivum L.) exposed to a combination of heat and drought stresses. We also performed assays of the relative water content, nutritional quality, and responses of phytohormone signaling pathways. Lower relative water content and accumulation of soluble sugars and amino acids were observed in plants exposed to combined heat and drought stress. These conditions increased abscisic acid levels in the absence of aphids, as well as leading to higher levels of jasmonate-dependent transcripts. The grain aphid infestation further increased abscisic acid levels and the abundance of jasmonic acid- and salicylic acid-dependent defenses under the combined stress conditions. Aphids reared on plants grown under drought stress alone showed lower net reproductive rates, intrinsic rates of increase, and finite rates of increase compared with aphids reared on plants in the absence of stress. The heat-treated plants also showed a decreased aphid net reproductive rate. These findings demonstrate that exposure to a combination of stresses enhances plant defense responses against aphids as well as altering nutritional quality.


2019 ◽  
Vol 40 (1) ◽  
pp. 46-59 ◽  
Author(s):  
Qing Fang ◽  
Xianqiang Wang ◽  
Haiyang Wang ◽  
Xiaowen Tang ◽  
Chi Liu ◽  
...  

Abstract In plants, R2R3 MYB transcription factors (TFs) consist of one large gene family and are involved in the regulation of many developmental processes and various stresses. However, the functions of most of MYB TFs in woody plants remain unknown. Here, PtrMYB94, an R2R3 MYB TF from Populus trichocarpa, is characterized to be involved in the regulation of drought responses and abscisic acid (ABA) signaling. PtrMYB94 encodes a nuclear-localized R2R3 MYB TF. RT-PCR results showed that the PtrMYB94 transcripts were relatively abundant in leaves and stems, and were induced rapidly in response to dehydration stress. Overexpression of PtrMYB94 improved plant drought responses, suggesting that this MYB TF may functionally regulate poplar adaptability to drought stress. Furthermore, the analysis of transcriptional expression and PtrMYB94 promoter: GUS activity showed that PtrMYB94 responded to ABA induction. PtrMYB94-overexpressing plants exhibited the inhibition of seed germination compared with the wild-type (WT) control under ABA exposure condition. The ABA content was evidently increased in the PtrMYB94-overexpressing plants relative to the WT plants. In addition, transcript levels of several ABA- and drought-responsive genes, such as ABA1 and DREB2B, were up-regulated. Taken together, our results suggest that PtrMYB94 is involved in an ABA-dependent drought stress regulation in Populus.


Sign in / Sign up

Export Citation Format

Share Document