scholarly journals Shimao and Erlitou: new perspectives on the origins of the bronze industry in central China

Antiquity ◽  
2017 ◽  
Vol 91 (355) ◽  
Author(s):  
J. Rawson

Over the last five years, excavation of a large, stone, fortified site at Shimao, on the northern edge of the Loess Plateau in Shaanxi Province, China, has radically changed our understanding of the events that precipitated the development of the first bronze casting in central China at Erlitou (Figure 1). An international conference on the Shimao site, held at Shenmu in August 2016, explored many aspects of this major discovery.

Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 314
Author(s):  
Qianxi Zhang ◽  
Zehui Chen ◽  
Fei Li

Agricultural development is facing two problems: insufficient grain production and low profit of farmers. There is a contradiction between the government’s goal of increasing production and the farmer’s goal of increasing profit. Exploring the appropriate management scale of farmland under different objectives is of great significance to alleviate the conflict of interests between the government and farmers. In this study the Cobb-Douglas production function model was used to measure the appropriate management scale of farmland under different objectives in Shaanxi Province and analyze the regional differences. Under the two objectives, the appropriate management scale of the Loess Plateau was the largest in the three regions, followed by Qinba Mountains and Guanzhong Plain. Farmland area and quality were the main influencing factors for the appropriate management scale of farmland under the goal of maximizing the farmland yield, while the nonagricultural employment rate and farmland transfer rate were the main influencing factors under the goal of maximizing farmers’ profits. It is easy for Shaanxi Province to increase farmers’ profits, but more land needed to be transferred to increase farmland yield. These results suggest that in order to balance the goal of increasing yield and profit, the transfer of rural surplus labor should be promoted, and the nonagricultural employment rate should be improved. In Loess Plateau, restoring the ecological environment and enhancing the farmland quality. In Guanzhong Plain, avoiding urban land encroachment on farmland. In Qinba Mountains, developing farming techniques and moderately increasing the intensity of farmland exploit.


2016 ◽  
Author(s):  
Haixin Zhang ◽  
Quanchao Zeng ◽  
Shaoshan An ◽  
Yanghong Dong ◽  
Frédéric Darboux

Abstract. Vegetation restoration was effective way of protecting soil erosion and water conservation on the Loess Plateau. Carbon fractions and enzyme activities were sensitive parameters for assessment of soil remediation through revegetation. Forest, forest steppe and grassland soils were collected at 0–5 cm and 5–20 cm soil layers in Yanhe watershed, Shaanxi Province. Urease, sucrase, alkaline phosphatase, soil organic carbon (SOC), microbial biomass carbon (MBC), easily oxidized organic carbon (EOC) and dissolved organic carbon (DOC) were measured. The results showed that carbon fraction contents and enzyme activities in the same soil layer followed the order that forest was higher than others. Carbon fraction contents and enzyme activities appeared that the 0–5 cm was higher than 5–20 cm soil layer. In addition, correlation analysis showed that urease activity was related to SOC, MBC, EOC and DOC at 0–5 cm layer; it was correlated with SOC, MBC and EOC at 5–20 cm layer. Sucrase activity had significant positive relationship with SOC, MBC and EOC. Alkaline phosphatase activity was related to EOC and DOC at 0–5 cm layer; it was correlated with MBC and EOC at 5–20 cm layer. The CCA reflected the relationship between sucrase activity and SOC. The contributions from the various forms of carbon fractions and enzyme activities as evaluated by the canonical coefficient of CV were on the order of SOC > DOC > MBC > EOC; sucrase > urease > alkaline phosphatase. Vegetation type was an important factor influencing the variation of soil enzyme activities and carbon fractions on the Loess Plateau.


2013 ◽  
Vol 89 (02) ◽  
pp. 153-161 ◽  
Author(s):  
Yang Zhao ◽  
Xinxiao Yu

The Loess Plateau in north-central China has a long history of human activities. As a result of climate change, deforestation and sparse vegetative cover, the region suffers from water shortages and severe soil erosion, significantly influencing efforts for sustainable social development. In order to understand the impacts of climatic variability and human activities on runoff and other hydrological factors in this region, the Luoyugou catchment and its paired catchments (Qiaozidong and Qiaozixi) were selected. Statistical analysis indicated precipitation did not vary significantly whereas the annual runoff decreased from 1986 to 2008, with an abrupt change in 1994. Actual evapotranspiration (AET) increased slightly but not significantly. A comparison of runoff in the paired catchments showed land use changes reduced runoff by more than 38% under the same rainfall conditions. Human activities were the strongest contributor to changes in runoff and AET, at 67% and 90% respectively, while the remaining contributor was climate variation. The influence of various human activities on runoff is quite different, and soil-water conservation initiatives have a greater impact on runoff (about 41%). Thus, human activities were the primary reason for the reduction in runoff in the study catchment compared to climate. Greater emphasis should be given to afforestation and soil-water conservation measures.


2011 ◽  
Vol 15 (8) ◽  
pp. 2519-2530 ◽  
Author(s):  
T. T. Jin ◽  
B. J. Fu ◽  
G. H. Liu ◽  
Z. Wang

Abstract. Hydrologic viability, in terms of moisture availability, is fundamental to ecosystem sustainability in arid and semi-arid regions. In this study, we examine the spatial distribution and after-planting variations of soil moisture content (SMC) in black locust tree (Robinia pseudoacacia L.) plantings in the Loess Plateau of China at a regional scale. Thirty sites (5 to 45 yr old) were selected, spanning an area of 300 km by 190 km in the northern region of the Shaanxi Province. The SMC was measured to a depth of 100 cm at intervals of 10 cm. Geographical, topographic and vegetation information was recorded, and soil organic matter was evaluated. The results show that, at the regional scale, SMC spatial variability was most highly correlated with rainfall. The negative relationship between the SMC at a depth of 20–50 cm and the stand age was stronger than at other depths, although this relationship was not significant at a 5 % level. Watershed analysis shows that the after-planting SMC variation differed depending upon precipitation. The SMC of plantings in areas receiving sufficient precipitation (e.g., mean annual precipitation (MAP) of 617 mm) may increase with stand age due to improvements in soil water-holding capacity and water-retention abilities after planting. For areas experiencing water shortages (e.g., MAP = 509 mm), evapotranspiration may cause planting soils to dry within the first 20 yr of growth. It is expected that, as arid and semi-arid plantings age, evapotranspiration will decrease, and the soil profile may gradually recover. In extremely dry areas (e.g., MAP = 352 mm), the variation in after-planting SMC with stand age was found to be negligible. The MAP can be used as an index to divide the study area into different ecological regions. Afforestation may sequentially exert positive, negative and negligible effects on SMCs with a decrease in the MAP. Therefore, future restoration measures should correspond to the local climate conditions, and the MAP should be a major consideration for the Loess Plateau. Large-scale and long-term research on the effects of restoration projects on SMCs is needed to support more effective restoration policies. The interaction between afforestation and local environmental conditions, particularly water availability to plants, should be taken into account in afforestation campaigns in arid and semi-arid areas.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 257
Author(s):  
Peng Guo ◽  
Jiqiang Lyu ◽  
Weining Yuan ◽  
Xiawan Zhou ◽  
Shuhong Mo ◽  
...  

This study examined the Chabagou River watershed in the gully region of the Loess Plateau in China’s Shaanxi Province, and was based on measured precipitation and runoff data in the basin over a 52-year period (1959–2010), land-use types, normalized difference vegetation index (NDVI), and other data. Statistical models and distributed hydrological models were used to explore the influences of climate change and human activity on the hydrological response and on the temporal and spatial evolution of the basin. It was found that precipitation and runoff in the gully region presented a downward trend during the 52-year period. Since the 1970s, the hydrological response to human activities has become the main source of regional hydrological evolution. Evapotranspiration from the large silt dam in the study area has increased. The depth of soil water decreased at first, then it increased by amount that exceeded the evaporation increase observed in the second and third change periods. The water and soil conservation measures had a beneficial effect on the ecology of the watershed. These results provide a reference for water resource management and soil and water conservation in the study area.


Sign in / Sign up

Export Citation Format

Share Document