Impact Attenuation Values and Prevention of Head Injuries on Sports Fields: Do Athletes Deserve Protection the Same As or Better Than in an Automobile Crash?

2014 ◽  
pp. 102-124
Author(s):  
Rolf Huber
2019 ◽  
Vol 28 (4) ◽  
pp. 368-372
Author(s):  
Carl G. Mattacola ◽  
Carolina Quintana ◽  
Jed Crots ◽  
Kimberly I. Tumlin ◽  
Stephanie Bonin

Context: During thoroughbred races, jockeys are placed in potentially injurious situations, often with inadequate safety equipment. Jockeys frequently sustain head injuries; therefore, it is important that they wear appropriately certified helmets. Objective: The goals of this study are (1) to perform impact attenuation testing according to ASTM F1163-15 on a sample of equestrian helmets commonly used by jockeys in the United States and (2) to quantify headform acceleration and residual crush after repeat impacts at the same location. Participants and Design: Seven helmet models underwent impact attenuation testing according to ASTM F1163-15. A second sample of each helmet model underwent repeat impacts at the crown location for a total of 4 impacts. Setting: Laboratory. Intervention: Each helmet was impacted against a flat and equestrian hazard anvil. Main Outcome Measures: Headform acceleration was recorded during all impact and computed tomography scans were performed preimpact and after impacts 1 and 4 on the crown to quantify liner thickness. Results: Four helmets had 1 impact that exceeded the limit of 300g. During the repeated crown impacts, acceleration remained below 300g for the first and second impacts for all helmets, while only one helmet remained below 300g for all impacts. Foam liner thickness was reduced between 5% and 39% after the first crown impact and between 33% and 70% after the fourth crown impact. Conclusions: All riders should wear a certified helmet and replace it after sustaining a head impact. Following an impact, expanded polystyrene liners compress, and their ability to attenuate head acceleration during subsequent impacts to the same location is reduced. Replacing an impacted helmet may reduce a rider’s head injury risk.


Author(s):  
David Eager ◽  
Hasti Hayati

More than four decades have passed since the introduction of safety standards for impact attenuation surfaces (IAS) used in playgrounds. Falls in children's playground are a major source of injuries and IAS is one of the best methods of preventing severe head injuries. However, the ability of IAS in prevention of other types of injuries, such as upper limb fractures, is unclear. Accordingly, in this paper, ten synthetic playground surfaces were tested to examine their performance beyond the collected head injury criterion (HIC) and maximum G-force (Gmax) outputs recommended by ASTM F1292. The aim of this work was to investigate any limitations with current safety criteria and proposing additional criteria to filter hazardous IAS that technically comply with the current 1000 HIC and 200 Gmax thresholds. The proposed new criterion is called the impulse force criterion (If). If combines two important injury predictor characteristics, namely: HIC duration that is time duration of the most severe impact; and the change in momentum that addresses the IAS properties associated with bounce. Additionally, the maximum jerk (Jmax), the bounce, and the IAS absorbed work are presented. HIC, Gmax, If, and Jmax followed similar trends regarding material thickness and drop height. Moreover, the bounce and work done by the IAS on the falling missile at increasing drop heights was similar for all surfaces apart from one viscoelastic foam sample. The results presented in this paper demonstrate the limitations of current safety criteria and should, therefore, assist future research to reduce long-bone injuries in playgrounds.


2021 ◽  
Vol 8 ◽  
pp. 205566832110503
Author(s):  
Daniel R Martel ◽  
Michelle R Tanel ◽  
Andrew C Laing

Introduction While protective headwear products (PHP) are designed to protect older adults from fall-related head injuries, there are limited data on their protective capacity. This study’s goal was to assess the impact attenuation provided by commercially available PHP during simulated head impacts. Methods A drop tower and Hybrid III headform measured the decrease in peak linear acceleration ( g atten) provided by 12 PHP for front- and back-of-head impacts at low (clinically relevant: 3.5 m/s) and high (5.7 m/s) impact velocities. Results The range of g atten across PHP was larger at the low velocity (56% and 41% for back and frontal impacts, respectively) vs. high velocity condition (27% and 38% for back and frontal impacts, respectively). A significant interaction between impact location and velocity was observed ( p < .05), with significantly greater g atten for back-of-head compared to front-of-head impacts at the low impact velocity (19% mean difference). While not significant, there was a modest positive association between g atten and product padding thickness for back-of-head impacts ( p = .095; r = 0.349). Conclusion This study demonstrates the wide range in impact attenuation across commercially available PHP, and suggests that existing products provide greater impact attenuation during back-of-head impacts. These data may inform evidence-based decisions for clinicians and consumers and help drive industry innovation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nick Draper ◽  
Natalia Kabaliuk ◽  
Danyon Stitt ◽  
Keith Alexander

The purpose of this study was to examine the potential of soft-shelled rugby headgear to reduce linear impact accelerations. A hybrid III head form instrumented with a 3-axis accelerometer was used to assess headgear performance on a drop test rig. Six headgear units were examined in this study: Canterbury Clothing Company (CCC) Ventilator, Kukri, 2nd Skull, N-Pro, and two Gamebreaker headgear units of different sizes (headgears 1–6, respectively). Drop heights were 238, 300, 610, and 912 mm with 5 orientations at each height (forehead, front boss, rear, rear boss, and side). Impact severity was quantified using peak linear acceleration (PLA) and head injury criterion (HIC). All headgear was tested in comparison to a no headgear condition (for all heights). Compared to the no headgear condition, all headgear significantly reduced PLA and HIC at 238 mm (16.2–45.3% PLA and 29.2–62.7% HIC reduction; P < 0.0005 , ηp2 = 0.987–0.991). Headgear impact attenuation lowered significantly as the drop height increased (32.4–5.6% PLA and 50.9–11.7% HIC reduction at 912 mm). There were no significant differences in PLA or HIC reduction between headgear units 1–3. Post hoc testing indicated that headgear units 4–6 significantly outperformed headgear units 1–3 and additionally headgear units 5 and 6 significantly outperformed headgear 4 ( P < 0.05 ). The lowest reduction PLA and HIC was for impacts rear orientation for headgear units 1–4 (3.3 ± 3.6%–11 ± 5.8%). In contrast, headgear units 5 and 6 significantly outperformed all other headgear in this orientation ( P < 0.0005 , ηp2 = 0.982–0.990). Side impacts showed the greatest reduction in PLA and HIC for all headgear. All headgear units tested demonstrated some degree of reduction in PLA and HIC from a linear impact; however, units 4–6 performed significantly better than headgear units 1–3.


1972 ◽  
Vol 1 ◽  
pp. 27-38
Author(s):  
J. Hers

In South Africa the modern outlook towards time may be said to have started in 1948. Both the two major observatories, The Royal Observatory in Cape Town and the Union Observatory (now known as the Republic Observatory) in Johannesburg had, of course, been involved in the astronomical determination of time almost from their inception, and the Johannesburg Observatory has been responsible for the official time of South Africa since 1908. However the pendulum clocks then in use could not be relied on to provide an accuracy better than about 1/10 second, which was of the same order as that of the astronomical observations. It is doubtful if much use was made of even this limited accuracy outside the two observatories, and although there may – occasionally have been a demand for more accurate time, it was certainly not voiced.


Author(s):  
J. Frank ◽  
P.-Y. Sizaret ◽  
A. Verschoor ◽  
J. Lamy

The accuracy with which the attachment site of immunolabels bound to macromolecules may be localized in electron microscopic images can be considerably improved by using single particle averaging. The example studied in this work showed that the accuracy may be better than the resolution limit imposed by negative staining (∽2nm).The structure used for this demonstration was a halfmolecule of Limulus polyphemus (LP) hemocyanin, consisting of 24 subunits grouped into four hexamers. The top view of this structure was previously studied by image averaging and correspondence analysis. It was found to vary according to the flip or flop position of the molecule, and to the stain imbalance between diagonally opposed hexamers (“rocking effect”). These findings have recently been incorporated into a model of the full 8 × 6 molecule.LP hemocyanin contains eight different polypeptides, and antibodies specific for one, LP II, were used. Uranyl acetate was used as stain. A total of 58 molecule images (29 unlabelled, 29 labelled with antl-LPII Fab) showing the top view were digitized in the microdensitometer with a sampling distance of 50μ corresponding to 6.25nm.


Author(s):  
A. V. Crewe

We have become accustomed to differentiating between the scanning microscope and the conventional transmission microscope according to the resolving power which the two instruments offer. The conventional microscope is capable of a point resolution of a few angstroms and line resolutions of periodic objects of about 1Å. On the other hand, the scanning microscope, in its normal form, is not ordinarily capable of a point resolution better than 100Å. Upon examining reasons for the 100Å limitation, it becomes clear that this is based more on tradition than reason, and in particular, it is a condition imposed upon the microscope by adherence to thermal sources of electrons.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


Author(s):  
P.R. Swann ◽  
A.E. Lloyd

Figure 1 shows the design of a specimen stage used for the in situ observation of phase transformations in the temperature range between ambient and −160°C. The design has the following features a high degree of specimen stability during tilting linear tilt actuation about two orthogonal axes for accurate control of tilt angle read-out high angle tilt range for stereo work and habit plane determination simple, robust construction temperature control of better than ±0.5°C minimum thermal drift and transmission of vibration from the cooling system.


Author(s):  
K.C. Newton

Thermal effects in lens regulator systems have become a major problem with the extension of electron microscope resolution capabilities below 5 Angstrom units. Larger columns with immersion lenses and increased accelerating potentials have made solutions more difficult by increasing the power being handled. Environmental control, component choice, and wiring design provide answers, however. Figure 1 indicates with broken lines where thermal problems develop in regulator systemsExtensive environmental control is required in the sampling and reference networks. In each case, stability better than I ppm/min. is required. Components with thermal coefficients satisfactory for these applications without environmental control are either not available or priced prohibitively.


Sign in / Sign up

Export Citation Format

Share Document