Language recovery after brain injury: a structural network control theory study

2021 ◽  
pp. JN-RM-1096-21
Author(s):  
Janina Wilmskoetter ◽  
Xiaosong He ◽  
Lorenzo Caciagli ◽  
Jens H. Jensen ◽  
Barbara Marebwa ◽  
...  
2018 ◽  
Vol 1 ◽  
Author(s):  
Yoed N. Kenett ◽  
Roger E. Beaty ◽  
John D. Medaglia

AbstractRumination and impaired inhibition are considered core characteristics of depression. However, the neurocognitive mechanisms that contribute to these atypical cognitive processes remain unclear. To address this question, we apply a computational network control theory approach to structural brain imaging data acquired via diffusion tensor imaging in a large sample of participants, to examine how network control theory relates to individual differences in subclinical depression. Recent application of this theory at the neural level is built on a model of brain dynamics, which mathematically models patterns of inter-region activity propagated along the structure of an underlying network. The strength of this approach is its ability to characterize the potential role of each brain region in regulating whole-brain network function based on its anatomical fingerprint and a simplified model of node dynamics. We find that subclinical depression is negatively related to higher integration abilities in the right anterior insula, replicating and extending previous studies implicating atypical switching between the default mode and Executive Control Networks in depression. We also find that subclinical depression is related to the ability to “drive” the brain system into easy to reach neural states in several brain regions, including the bilateral lingual gyrus and lateral occipital gyrus. These findings highlight brain regions less known in their role in depression, and clarify their roles in driving the brain into different neural states related to depression symptoms.


Author(s):  
Linden Parkes ◽  
Tyler M. Moore ◽  
Monica E. Calkins ◽  
Matthew Cieslak ◽  
David R. Roalf ◽  
...  

ABSTRACTBackgroundThe psychosis spectrum is associated with structural dysconnectivity concentrated in transmodal association cortex. However, understanding of this pathophysiology has been limited by an exclusive focus on the direct connections to a region. Using Network Control Theory, we measured variation in both direct and indirect structural connections to a region to gain new insights into the pathophysiology of the psychosis spectrum.MethodsWe used psychosis symptom data and structural connectivity in 1,068 youths aged 8 to 22 years from the Philadelphia Neurodevelopmental Cohort. Applying a Network Control Theory metric called average controllability, we estimated each brain region’s capacity to leverage its direct and indirect structural connections to control linear brain dynamics. Next, using non-linear regression, we determined the accuracy with which average controllability could predict negative and positive psychosis spectrum symptoms in out-of-sample testing. We also compared prediction performance for average controllability versus strength, which indexes only direct connections to a region. Finally, we assessed how the prediction performance for psychosis spectrum symptoms varied over the functional hierarchy spanning unimodal to transmodal cortex.ResultsAverage controllability outperformed strength at predicting positive psychosis spectrum symptoms, demonstrating that indexing indirect structural connections to a region improved prediction performance. Critically, improved prediction was concentrated in association cortex for average controllability, whereas prediction performance for strength was uniform across the cortex, suggesting that indexing indirect connections is crucial in association cortex.ConclusionsExamining inter-individual variation in direct and indirect structural connections to association cortex is crucial for accurate prediction of positive psychosis spectrum symptoms.


2016 ◽  
Vol 21 (3) ◽  
pp. 385-398 ◽  
Author(s):  
Svetlana Atslega ◽  
Dmitrijs Finaskins ◽  
Felix Sadyrbaev

We study the structure of attractors in the two-dimensional dynamical system that appears in the network control theory. We provide description of the attracting set and follow changes this set suffers under the changes of positive parameters µ and Θ.


2020 ◽  
Vol 24 (5 Part B) ◽  
pp. 3069-3077
Author(s):  
Feilong Zheng ◽  
Yundan Lu ◽  
Shuguang Fu

In view of the problems of large overshoot and large oscillation frequency in cur?rent furnace temperature control, based on the development of intelligent control theory, expert control, fuzzy control, and neural network control in intelligent control theory are combined with proportional integral derivative (PID) control. The intelligent PID control algorithm is used to carry out numerical simulation and experimental research on these several control algorithms. The results show that the adjustment effect of the intelligent PID control algorithm is significantly better than the traditional PID control algorithm. Among them, the fuzzy self-tuning PID control algorithm and the fuzzy immune PID control algorithm are feasible in the application of furnace temperature control. The neural network PID control algorithm It also has good development and application potential.


2021 ◽  
Author(s):  
Yusuf Osmanlioglu ◽  
Drew Parker ◽  
Jacob A Alappatt ◽  
James J Gugger ◽  
Ramon R Diaz-Arrastia ◽  
...  

Traumatic brain injury (TBI) is a major public health problem. Caused by external mechanical forces, a major characteristic of TBI is the shearing of axons across the white matter, which causes structural connectivity disruptions between brain regions. This diffuse injury leads to cognitive deficits, frequently requiring rehabilitation. Heterogeneity is another characteristic of TBI as severity and cognitive sequelae of the disease have a wide variation across patients, posing a big challenge for treatment. Thus, measures assessing network-wide structural connectivity disruptions in TBI are necessary to quantify injury burden of individuals, which would help in achieving personalized treatment, patient monitoring, and rehabilitation planning. Despite TBI being a disconnectivity syndrome, connectomic assessment of structural disconnectivity has been very scarce. In this study, we propose a novel connectomic measure that we call network anomaly score (NAS) to capture the integrity of structural connectivity in TBI patients by leveraging two major characteristics of the disease: diffuseness of axonal injury and heterogeneity of the disease. Over a longitudinal cohort of moderate-to-severe TBI patients, we demonstrate that structural network topology of patients are more heterogeneous and are significantly different than that of healthy controls at 3 months post-injury, where dissimilarity further increases up to 12 months. We also show that NAS captures injury burden as quantified by post-traumatic amnesia and that alterations in the structural brain network is not related to cognitive recovery. Finally we compare NAS to major graph theory measures used in TBI literature and demonstrate the superiority of NAS in characterizing the disease.


1996 ◽  
Vol 5 (1) ◽  
pp. 18-24
Author(s):  
Tatsuo Sakamoto ◽  
Tatsuo Hayashi ◽  
Masahiko Uzura ◽  
Hiroharu Asano ◽  
Yoshihiro Hoshikawa ◽  
...  

2021 ◽  
Author(s):  
Shi Gu ◽  
Panagiotis Fotiadis ◽  
Linden Parkes ◽  
Cedric H. Xia ◽  
Ruben C. Gur ◽  
...  

ABSTRACTPrecisely how the anatomical structure of the brain supports a wide range of complex functions remains a question of marked importance in both basic and clinical neuroscience. Progress has been hampered by the lack of theoretical frameworks explaining how a structural network of relatively rigid inter-areal connections can produce a diverse repertoire of functional neural dynamics. Here, we address this gap by positing that the brain’s structural network architecture determines the set of accessible functional connectivity patterns according to predictions of network control theory. In a large developmental cohort of 823 youths aged 8 to 23 years, we found that the flexibility of a brain region’s functional connectivity was positively correlated with the proportion of its structural links extending to different cognitive systems. Notably, this relationship was mediated by nodes’ boundary controllability, suggesting that a region’s strategic location on the boundaries of modules may underpin the capacity to integrate information across different cognitive processes. Broadly, our study provides a mechanistic framework that illustrates how temporal flexibility observed in functional networks may be mediated by the controllability of the underlying structural connectivity.AUTHOR SUMMARYPrecisely how the relatively rigid white matter wiring of the human brain gives rise to a diverse repertoire of functional neural dynamics is not well understood. In this work, we combined tools from network science and control theory to address this question. Capitalizing on a large developmental cohort, we demonstrated that the ability of a brain region to flexibly change its functional module allegiance over time (i.e., its modular flexibility), was positively correlated with its proportion of anatomical edges projecting to multiple cognitive networks (i.e., its structural participation coefficient). Moreover, this relationship was strongly mediated by the region’s boundary controllability, a metric capturing its capacity to integrate information across multiple cognitive domains.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yerong Sun ◽  
Yeguo Sun ◽  
Chunzhi Yang

This paper studies the finite-time stabilization and boundedness problem of a class of network control systems that are simultaneously affected by time delay and packet loss. Based on the Lyapunov function method, the sufficient conditions for the design of the state feedback controller in the form of linear matrix inequality are obtained. The state feedback controller makes the network control system stable for a finite time. Finally, a numerical example is given to illustrate the effectiveness and feasibility of the method. The research results of this paper will develop and enrich the control theory system of the network control system and provide advanced control theory methods and application technology reserves in order to promote the development process of the network control system application and improve the application level.


Sign in / Sign up

Export Citation Format

Share Document