scholarly journals Statistical Analysis of Tribological Performance of Functionally Graded Copper Composite Using DOE

Author(s):  
Radhika N. ◽  
M. Sam

Dry sliding performance of Cu-11Ni-4Si/10wt.%Al2O3 graded composite was investigated statistically and experimentally using pin-on-disc wear tester. Microstructural analysis revealed maximum gradient concentration of ceramics towards the inner radial wall of developed composite. The wear analysis was based on Taguchi’s L27 orthogonal array and Regression models, at tribo-parameters (load-15, 25, 35 N, slide velocity-1.5, 2.5, 3.5 m/s and slide distance-750, 1500, 1250 m). Wear raised with proportional rise in load and distance. Trend analysis of influential factors against wear response was studied using Analysis of Variance. The influence of process conditions and their interactions on the wear are also detailed. Worn surface analysis identified the formation of Mechanically Mixed Layers at intermediate velocity. This had a major influence over the improvement of wear resistance. This developed composite is suggestable for diverse automobile components of various tribology applications.

2012 ◽  
Vol 134 (3) ◽  
Author(s):  
K. Suresh Kumar Reddy ◽  
Pravin Kannan ◽  
Ahmed Al Shoaibi ◽  
C. Srinivasakannan

The present work is an attempt to compile and analyze the most recent literature pertaining to thermal pyrolysis of plastic waste using fluidized bed reactors. The review is short owing to the small number of work reported in the open literature in particular to the fluidized beds. Although works on pyrolysis are reported in fixed beds, autoclaves, and fluidized beds, vast majority of them address to the utilization of fluidized bed due to their advantages and large scale adaptability. The pyrolysis temperature and the residence time are reported to have major influence on the product distribution, with the increase in pyrolysis temperature favoring gas production, with significant reduction in the wax and oil. The pyrolysis gas generally contains H2, CO, CO2, CH4, C2H4, C2H6 while liquid product comprises benzene, toluene, xylene, styrene, light oil, heavy oil, and gasoline with the variations depending on process conditions. The effects of other process parameters, namely fuel feed rate, fuel composition, and fluidizing medium have been reviewed and presented.


Author(s):  
Alessandra Caggiano ◽  
Roberto Teti ◽  
Vittorio Alfieri ◽  
Fabrizia Caiazzo

AbstractAdditive manufactured components require polishing to improve their inherently rough surface finish. In this work, an innovative laser polishing process based on wobbling of the laser beam is proposed for surface finish enhancement of additive manufactured parts made of Cr–Cu precipitation hardening steel, widely employed for mechanical components in the automotive industry. Parts were fabricated by selective laser melting and subjected to the innovative laser polishing under different process conditions. Surface characterization was performed by microstructural analysis and surface roughness measurement. Machine learning-based CNN processing of polished surface images was employed for automatic identification of optimal LP condition.


Author(s):  
K. Kartik Sriram ◽  
N. Radhika ◽  
Manu Sam ◽  
Shrihari S

Functionally graded material containing LM13 aluminium alloy as matrix and alumina as reinforcement (10 wt. %) was fabricated (Φout150 × Φin90 × 100 mm) by centrifugal casting. Samples were machined from the cylindrical cast along its longitudinal axis. Variation in hardness along the radial cross-sectional wall revealed 33.7% improvement at the outer periphery due to higher presence of alumina. This zone was preferred for dry sliding wear experiments, designed based on Taguchi L27 orthogonal array by varying the process parameters like sliding velocity, sliding distance and load using pin-on-disc tribometer. Analysis of variance revealed velocity as most influential wear factor, next to load. An optimal condition to minimise adhesive wear was determined at a load of 15 N, sliding velocity of 3.5 m/s and sliding distance of 1250 m. Scanning electron microscope analysis on abraded surfaces showed formation of tribolayer at high velocities and delamination at high loads.


2009 ◽  
Vol 424 ◽  
pp. 9-17 ◽  
Author(s):  
Andrew J. den Bakker ◽  
Robert J. Werkhoven ◽  
W.H. Sillekens ◽  
Laurens Katgerman

Longitudinal weld seams are an intrinsic feature in hollow extrusions produced with porthole dies. The formation of longitudinal weld seams is a solid bonding process, controlled by the local conditions in the extrusion die. Being the weakest areas within the extrusion cross section, it is desirable to achieve adequate properties of these weld seams. In our research, the concept of a weld seam integrity indicator as a means of quantifying bonding efficiency is introduced. The value of this indicator depends on a number of factors: the material flow within the die weld chambers, an adequate pressure level acting on the weld planes and finally the evolution of the metal microstructure. Optimisation of the welding conditions leads to a higher value of the weld seam integrity indicator and thus to improved weld seam properties. The objective of the research presented in this paper is to assess the feasibility of this concept. In lab-scale experiments, AA6060 and AA6082 aluminium alloy billets were formed into strips by means of the direct hot extrusion process. By utilising porthole dies a central longitudinal weld seam is formed. The effect of different geometries of the weld chamber and the processing conditions on the quality of the weld seam are investigated. Characterisation of these weld seams through mechanical testing, focusing on the ability of the weld seam area to accommodate plastic deformation following the onset of plastic instability, and microstructural analysis provides insight into bonding performance. The outcome of this characterisation provides a basis for an estimation of the weld seam indicator. Through computer modelling, the particular process conditions related to weld seam formation are calculated and correlated with the experimental results. The experimental results clearly demonstrate that weld seam formation is controlled by a combination of factors as described above. Inadequate fulfilment of these conditions, verified by the FE-simulations, is the cause of inferior weld seams, associated with low values of the weld seam integrity indicator. Through further elaboration of the concepts presented in this work, the weld seam integrity indicator is to be developed, with the future aim of predicting the weld seam performance through finite element simulations.


2014 ◽  
Vol 1025-1026 ◽  
pp. 302-309 ◽  
Author(s):  
Nattadon Udompanit ◽  
Panyawat Wangyao ◽  
Suparoek Henpraserttae ◽  
Yuttanant Boonyongmaneerat

The present studies investigate the wear response of composition-modulated multilayer Ni-W coatings as fabricated by electrodeposition. By regulating the pulse waveforms of the applied currents, the chemical composition, grain size, and the individual layer thickness of the electrodeposited Ni-W CMMC can be tailored. The ball-on-disc test and the subsequent microstructural analysis indicates that the wear resistance and friction coefficient of Ni-W CMMC are influenced by the composition and the thickness of the individual alternating layer. The decrement of interlayer’s size monotoically increase wear resistance and friction coefficient.


2017 ◽  
Vol 52 (3) ◽  
pp. 301-312 ◽  
Author(s):  
Sarbjeet Kaushal ◽  
Dheeraj Gupta ◽  
Hiralal Bhowmick

In the present work, functionally graded clads of Ni-SiC material have been developed on austenitic stainless steel (SS-304) substrate through 2.45 GHZ domestic microwave applicator. The functionally graded clads were processed by the concept of hybrid heating with varying exposed microwave power levels from 180 to 900 W. The optimum exposure time of 900 W microwave power was varied with compositional gradient and it is from 300 s to 420 s. The maximum thickness achieved for functionally graded clads was 2 mm at optimum exposure power and time. The microstructural analysis of developed clads reveals that the partial mutual diffusion between each successive layer took place and it confirms the metallurgical bonding in between. The typical flower like structure of Ni-matrix has been observed in clads where the SiC particles were uniformly dispersed. The maximum functionally graded clads micro-hardness of 1020 ± 30 HV were achieved.


2016 ◽  
Vol 61 (2) ◽  
pp. 613-620
Author(s):  
K. Zarębski ◽  
M. Nykiel

Abstract The study describes the microstructural analysis of cylindrically-shaped functionally graded products sintered from iron powder with scheduled graded structure on the cross-section running from the core to the surface layer of the sinter. Different types of structure were produced using Distaloy SE powder in two compositions - one without the addition of carbon, and another with 0.6wt% C. Two methods were used to fill the die cavity and shape the products. The first method involving a two-step compaction of individual layers. The second method using an original technique of die filling enabled the formation of transition zone between the outer layer and the core still at the stage of product shaping. As part of microstructural analysis, structural constituents were identified and voids morphology was examined. Studies covered the effect of the type of the applied method on properties of the graded zone obtained in the manufactured products


2020 ◽  
Vol 8 (6) ◽  
pp. 5810-5814

Titanium and Titanium alloys are widely used for aircraft as a material having light weight, high strength and corrosion resistance. The titanium and its alloys are compatible with carbon fibre reinforced plastic components with respect to corrosion and thermal behaviour. Response of Titanium grade 2 and grade 12 at different speed during sliding is to be studied. The literature survey shows inadequate studies on wear response of these alloys. Experiments using pin on disc test rigs were conducted. Speed level of 500rpm, 1000rpm, and 1500 rpm were used. The sliding was found to be sensitive to sliding speed. As speed increases from 500 rpm to 1000 rpm the coefficient of friction increased. At speed of 1500 rpm two steady phase of sliding identified. In one of the steady phase the coefficient of friction was found to be more than the coefficient of friction at 1000 rpm. Where in another steady phase of sliding the coefficient of friction was found to be comparable or less then the coefficient of friction at 1000 rpm


2021 ◽  
Author(s):  
Maziar Moradi-Lakeh ◽  
Salime Goharinezhad ◽  
Ali AmirKafi ◽  
Seyed Mohsen Zahraei ◽  
Abdolreza Esteghamati ◽  
...  

Abstract Background: Despite many successes in Immunization programs in Iran, vaccine policymaking has confronted with important weaknesses, and more effort is required to improve progress and prepare for the preferred future. In order to address the challenges facing vaccine development, this study has defined to identify influential factors on the future of development of human vaccines in Iran for strengthening evidence-based policy-making.Method:This mixed-method study aimed to analyze the factors affecting the future of human vaccine development using Cross Impact Analysis. Firstly, with a scoping review, the factors affecting the future of human vaccine development were identified. Secondly, a semi-structured interview was carried out with the determined experts in this sphere to add more factors and confirm the identified factors in the Iran context. Finally, a cross-impact analysis (CIA) approach was applied to understand the complex relationships between the given factors. Thematic analysis was used for the qualitative data and MICMAC analysis was applied for characterizing the relationships between factors.Results: Seventeen key driving forces factors were first identified through reviewing and interviewing. These factors are weighted from zero-three and analyzed by MICMAC software. The CIA technique characterized the effect of each one of these factors on vaccine development and then elaborated on the interaction between them. The results revealed that strong leadership and governance, innovation ecosystem, and immunization information systems were critical driving forces for developing vaccines in Iran. In fact, the degree of influence of these factors is much stronger than the degree of their dependency in the future. So, the vaccine development system is basically dependent on these key drivers. Conclusion: This study explores interactions among factors affecting vaccine development by using cross-impact analysis. It indicates that interactions among the identified factors do have a major influence on the overall system. Understanding the interactions among factors help policymakers formulating successful strategies for shaping a desirable future. Future studies could ratify the findings from this research applying other methodological approaches.


Sign in / Sign up

Export Citation Format

Share Document