scholarly journals Design and Development of Solar Desalination Plant: Point-Focus Parabolic Solar Still

2018 ◽  
Vol 5 (2) ◽  
pp. 124-133
Author(s):  
S.M. Atnaw ◽  
R.M. Ramli ◽  
S.A. Rusdah ◽  
T. Marimuthu ◽  
P. Mardarveran ◽  
...  

Direct sunlight has been utilized long back for desalination of water. Solar still is a device that converts saline water to potable water. This project mainly discussed about point-focus parabolic solar still (PPSS). Since lack of water supply has become a serious problem today, this prototype is design to produce fresh water from saline water to enable continuous supply of water. However, the current solar desalination generation capacity is generally low and has high installation cost. Hence, there is a need for the enhancement of the productivity which can be achieved through point focus parabolic solar still. Existing PPSS produces of 3.56 L/m2 fresh water of per day. In this project, we have some modifications which will increase the productivity of PPSS.

Author(s):  
Md. Raquibul Hasan

The availability of drinking water is reducing day by day, whereas the freshwater necessity is tremendously increasing. There is a need for some sustainable water distillation (purification) to overcome this problem. Solar desalination is a technique used to convert brackish or saline water into potable water, and solar still is a useful device to distil brackish water for drinking purposes. Numerous designs of the solar still system have been developed worldwide. Many researchers outlined mathematical terms, performed experiments and validated the outcome from the various types of solar stills by varying the design and operating parameters. In this article, a review of the active and passive solar stills' performance has been carried out.


2019 ◽  
Vol 286 ◽  
pp. 08007
Author(s):  
M. Bouzaid ◽  
N. Mouhsin ◽  
M. Taha-Janan ◽  
M. Oubrek ◽  
O. Ansari

Morocco is considered as a water-stressed country and is among the countries that face fresh water scarcity. However Morocco has an important solar energy and a significant amount of seawater and ocean. Therefore converting saline water to fresh water using solar energy is the perfect and the cleanest solution. Solar still is the simplest, cleanest and cheapest technology of solar desalination. In this paper a novel solar still with stepped-slope absorber plate and baffles was proposed and developed in order to enhance the thermal performance of the conventional solar stills. In order to validate the performance of the developed technology a comparative study were elaborated. A mathematical model was developed. The energy balance equations for the various elements of the solar still are formulated and numerically solved using the dynamic simulation program Matlab/SimulinkTM and the Euler explicit method programmed by C++. Also, the experimental process of the new construction was evaluated and validates the new pattern performance. The thermal performance was investigated and shows considerable improvement through the new construction.


2021 ◽  
Vol 13 (1) ◽  
pp. 98-104
Author(s):  
Abhinav Yadav ◽  
Md Saifullah Khalid ◽  
Prashant Saini ◽  
Ankit Kumar

The necessity of pure water is rising each day, causes are population, industrial and agricultural expansion, worldwide. Due to the increasing population of world the fresh water will become more serious problem in the coming days. Hence, people around the world have to work on different and efficient methodology to generate potable water. Solar still is one among these methods acting device. In this paper, a review of using PCM and PCM with other enhancement techniques has been discussed. Use of stearic acid as a PCM below the liner of basin, each day pure water of 9.005kg/m2 per day and 4.998 kg/m2 per day has been found in the company of PCM and not including of PCM respectively. It is observed that solar desalination system in the company of paraffin-CuO is best among the others solar still with paraffin PCM, paraffin-TiO2, paraffin-GO. CuO, TiO2 and GO are the nanoparticles.


2014 ◽  
Vol 592-594 ◽  
pp. 2409-2415 ◽  
Author(s):  
S. Naga Sarada ◽  
Banoth Hima Bindu ◽  
Sri Rama R. Devi ◽  
Ravi Gugulothu

In recent years with the exacerbation of energy shortage, water crisis increases around the world. With the continuous increase in the level of greenhouse gas emissions, the use of various sources of renewable energy is increasingly becoming important for sustainable development. Due to the rising oil price and environmental regulations, the demand of utilizing alternative power sources increased dramatically. Alternative energy and its applications have been heavily studied for the last decade. Energy and water are essential for mankind that influences the socioeconomic development of any nation. Pure water resources become more and more scarce every day as rivers, lakes wells and even seawater pollution rapidly increases. Solar energy is one promising solution to secure power and potable water to future generation. The process of distillation can be used to obtain fresh water from salty, brackish or contaminated water. Water is available in different forms such as sea water, underground water, surface water and atmospheric water. Clean water is essential for good health. The search for sustainable energy resources has emerged as one of the most significant and universal concerns in the 21st century. Solar energy conversion offers a cost effective alternative to our traditional usages. Solar energy is a promising candidate in many applications. Among the alternative energy sources used for electricity production, wind and solar energy systems have become more attractive in recent years. For areas where electricity was not available, stand alone wind and solar systems have been increasingly used. The shortage of drinking water in many countries throughout the world is a serious problem. Humankind has depended for ages on river, sea water and underground water reservoirs for its fresh water needs. But these sources do not always prove to be useful due to the presence of excessive salinity in the water. To resolve this crisis, different methods of solar desalination have been used in many countries. Distillation is a well known thermal process for water purification, most importantly, water desalination. Most of the conventional water distillation processes are highly energy consuming and require fossil fuels as well as electric power for their operation. Single basin solar still is a popular solar device used for converting available brackish or waste water into potable water. Because of its lower productivity, it is not popularly used. Numbers of works are under taken to improve the productivity and efficiency of the solar still. There are large numbers of PCMs that melt and solidify at wide range of temperatures, making them attractive in a number of applications. PCMs have been widely used in latent heat thermal storage systems for heat pumps, solar engineering and spacecraft thermal control applications. The use of PCMs for heating and cooling applications for buildings has been investigated within the past decade. The experimental results computed in the field of water distillation process using solar energy in the presence of energy storage materials sodium sulphate and sodium acetate are discussed in this paper. Keywords: solar energy, saline water, distillation, phase change material.


2016 ◽  
Vol 4 (2) ◽  
pp. 72
Author(s):  
Md Hamidul Islam ◽  
Quazi Hamidul Bari ◽  
Md Shafiqul Islam

Distilled water for drinking purposes is vital especially in semi or arid countries where surface water is limited and groundwater is saline. The ceramic block solar desalination unit (CBSDU) is significant for single household in developing countries like Bangladesh. The aims of this study are to monitor daily production and cost compared with basin type solar still (BSS). The materials and installation cost of the ceramic block solar unit was estimated Tk.40 per solar desalination unit. The field experiment was carried out on the roof top of the civil engineering building, KUET from 24th February to 11th June, 2012. The CBSDU was installed perpendicular to the surface, from 2 feet above the surface, on a concrete base. The collection bottle was put under the concrete base. The distilled water was collected every day at least two hours after sunset. The average production was found 4.26 lit/m2/day. The CBSDU offers 12% less cost than BSS. Single household can easily use CBSDU for their drinking water in coastal belt of Bangladesh.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Z. S. Abdel-Rehim ◽  
A. Lashine

A study of solar desalination still combined with air-conditioning system is presented in this work. Combining the solar still with the air-conditioning system can increase the condensate output from the solar still while meeting the cooling load needs. The operation of the combined solar distillation and air-conditioning system, that utilized the heat rejected by the condenser and the heat sink of the evaporator, has been tested to obtain the distillate output from the solar still during the air-conditioning of a space application. Experimental work of the present system is carried out in June 2009 (summer month), in Cairo, Egypt. The present problem is tested to use the integrated system operation for already utilizing air-conditioning energy consumption; that is, meeting the hourly air-conditioning load and the daily fresh water production. The system is tested for day and nighttimes of operation of the combined system for the summer month: June 2009, Cairo, Egypt. Economic study evaluation is presented. The results show that the maximum fresh water productivity through June is 29 Liters in daytime of June 5 2009 and 37 liters in nighttime (nocturnal time) of June 3 2009. The present system more efficient in day time (8:00 AM–8:00 PM) and night time (8:00 PM–8:00 AM). Therefore, the maximum efficiency is recorded 40% for the present system in daytime, 36% in nighttime, and 25% for conventional solar still. COP increases with inside temperature (Ti), however it decreases with outside temperature (Tamb). The average cost of one liter of distillate water from the present combined system = 0.021441 (LE).


2012 ◽  
Vol 212-213 ◽  
pp. 155-162
Author(s):  
Nalaka D. Subasinghe ◽  
Priyantha Jinadasa

Demarcation of fresh- and saline-water interface is important in water supply engineering in coastal regions. A resistivity imager system was employed to investigate the saline water intrusion to freshwater table at selected coastal locations in Sri Lanka. This is the first such attempt in Sri Lanka using the above technique. Systematic geo-resistivity investigations were carried out at randomly selected sites at Mundel and Rekawa coastal areas. Measured and calculated values generally show good agreement, especially in Mundel area, where the current penetration is good. The results indicate a possibility of using resistivity imager system to demarcate the saline and fresh water interfaces and intermixing zones, especially in the wet zone.


Author(s):  
Subramaniyan C ◽  
◽  
Prakash K B ◽  
Amarkarthik A ◽  
Kalidasan B ◽  
...  

Demand and conservation for potable water has become a foremost concern world-wide. Many technologies were adapted for converting the saline water to potable water to meet the required demand on water conservation. In the current research work triangular solar still with rectangular-fins attached to the basin is proposed to enhance the output of potable water from the solar still setup. Solar still with and without rectangular-fins on the basin are fabricated for experimental comparison and evaluation in addition to numerical investigations. Thermal Performance, instantaneous efficiency and potable water output of the proposed solar still & base solar still are investigated during March month for the location of Sathyamangalam. Investigation shows enhancement of water production in the proposed solar still by 41% higher compared to the base still. The maximum distillate output from modified still and base still for a typical day is 3.1 liter and 2.2 liter respectively.


Access to fresh water is a problem faced by both developed and under developed nations. Although seawater is plentiful, large amounts of energy is required to separate the potable water from the salts. Compared to other desalination processes utilising fossil fuels, solar distillation is inexpensive, environmentally friendly and employs clean and renewable energy. This paper seeks to explore the effect of the single slope solar still condenser plate material on the still production under Malaysian climate. 5 mm thick extra clear float glass condenser plate produced the highest amount of fresh water (63.5 ml) compared to 2 mm thick clear float glass and 5 mm thick bronze glass.


Sign in / Sign up

Export Citation Format

Share Document