scholarly journals Effect of impregnation on hybrid mesoporous silica / kenaf reinforced epoxy composites in term of flexural, compressive and water absorption properties

2020 ◽  
Vol 14 (4) ◽  
pp. 7528-7539
Author(s):  
F. Bajuri ◽  
N. Mazlan ◽  
M. R. Ishak ◽  
M. K. A. Uyup

In this work, mesoporous silica with designated amount was added in kenaf/epoxy composites to improve the mechanical properties of the composite and reduce the water uptake of fabricated composites. The composites were fabricated using hot press method (HP) and impregnation method (IMP). For HP specimens, silica was dispersed into epoxy resin using homogenizer before being applied to the kenaf mat and subsequently hot pressed. While for IMP specimens, the kenaf mat was placed inside the silica/epoxy solution under 600 mm Hg impregnation pressure before being hot pressed. The results for flexural properties revealed that IMP specimen with 40 vol% of kenaf fibre and 5 vol% of silica have the highest strength and modulus at 78.6 MPa and 5.11 GPa respectively. Same trend can be seen for compressive properties as the same specimen had the highest compressive strength and modulus at 69.3 MPa and 1.81 GPa respectively. Finally for water absorption properties, IMP specimens had a reduction in water uptake compared to its HP specimen counterparts with the same kenaf and silica content. IMP specimen with 60 vol% kenaf and 5 vol% silica had the lowest water uptake after 90 days of immersion in distilled water at 13.5% increase in weight.


2015 ◽  
Vol 6 (2) ◽  
pp. 34-38
Author(s):  
M. S. Jamaludin ◽  
A. Zulkharnain ◽  
A. A. Khan ◽  
N. Wagiman

 This study examines the water absorption of sago hampas biocomposite utilizing glycidyl methacrylate as its matrix. Composites were fabricated with 25, 30, 40 wt% sago hampas content and another sample of pure sago hampas using hydraulics hot press machine. The water absorption properties of composites with different sago hampas composition were investigated according to Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials of ASTM D570. Water absorption of pure sago hampas composite have the highest average water absorption percentage with 59.1 wt% as compared to the lowest average water absorption percentage recorded for 30 wt% sago hampas content biocomposite with 16.8%. However sago hampas loading was increased resulting in the increased in average water absorption on biocomposite for 40 wt% sago hampas content which is 33.1%.



2014 ◽  
Vol 2 (23) ◽  
pp. 8644-8651 ◽  
Author(s):  
Guang-Sheng Wang ◽  
Ying-Ying Wu ◽  
Xiao-Juan Zhang ◽  
Yong Li ◽  
Lin Guo ◽  
...  

The PVDF/ZnO composites were prepared by a simple hot-press method. The dielectric behavior of the composites was improved at a lower percolation threshold. For the composites with a filler content of 10 wt%, the reflection loss appears as two peaks that can reach −15.90 dB at 6.60 GHz and −25.44 dB at 16.48 GHz.



2021 ◽  
pp. 1-12
Author(s):  
Vijay Raghunathan ◽  
Jafrey Daniel James Dhilip ◽  
Mohan Ramesh ◽  
Ramprasath Kumaresan ◽  
Srivenkateswaran Govindarajan ◽  
...  


2020 ◽  
pp. 096739112097138
Author(s):  
Dionisis Semitekolos ◽  
Katerina Pardou ◽  
Pantelitsa Georgiou ◽  
Panagiota Koutsouli ◽  
Iosif Bizelis ◽  
...  

The purpose of this study is to investigate a novel exploitation approach for a mass livestock byproduct, namely sheep wool fibres. In order to fulfil this aim, wool fibre toughened epoxy composites with an amount of 2.4, 4.1 and 5.7 phr were prepared via the hot press method. Initially, mechanical assessment of the composites was executed, in order to evaluate their mechanical integrity. The flexural and shear strength tests showed that the wool fibre-epoxy composites maintain their mechanical properties for up to 4.1 phr and no degradation is detected. Subsequently, the thermal properties were tested. Thermogravimetric analysis proved that adding wool fibres as toughening agent in epoxy matrix can prolong the endurance of the material while reaching high temperatures. The coefficient of thermal conductivity decreased by 30% compared to neat epoxy, something that is also confirmed through simulation, proving that wool fibre-epoxy composites can be considered as a promising insulating material, while exploiting a natural waste.



2017 ◽  
Vol 24 (5) ◽  
pp. 731-738 ◽  
Author(s):  
Varun Mittal ◽  
Shishir Sinha

AbstractThe aim of this research was to study the feasibility of using wheat straw fiber with epoxy resin for developing natural fiber-polymer composites. For this purpose, the epoxy resin was reinforced with 5, 10, 15, 20, and 25 wt.% of the wheat straw fiber with the help of the hand lay-up technique. Further, in order to improve the composite characteristic, wheat straw fibers were treated with three different concentrations of alkali (1%, 3%, and 5%). The mechanical and water absorption properties of the treated fiber composites were characterized and compared with those of untreated fiber-filled epoxy composites. It was observed that the mechanical properties and water resistance were reduced with the increase in wheat straw fiber loading from 5 to 25 wt.%. Among the three levels of alkali treatment, the composite made with 3% alkali-treated fiber exhibited superior mechanical properties than the other untreated and treated fiber composites, which pointed to an efficient fiber-matrix adhesion. The scanning electron microscope was used to observe the surface features of the wheat straw fiber.



2018 ◽  
Vol 49 (5) ◽  
pp. 597-620 ◽  
Author(s):  
S Ramakrishnan ◽  
K Krishnamurthy ◽  
R Rajasekar ◽  
G Rajeshkumar

This study deals with the investigation of the mechanical and water absorption properties of jute fibre reinforced epoxy composites prepared by using hand layup method. The effects of fibre length (10, 20, 30 and 40 mm), fibre weight fraction (0%, 5%, 10%, 15%, 20% and 25%), concentration of NaOH treatment (5% and 10%) and nano-clay addition (1, 3, 5 and 7 wt%) on the aforementioned properties were determined. Morphological characterisation was performed for the tensile and flexural fractured surface of the specimens to study their microstructural failures. The results revealed that the composites reinforced with 5% of NaOH-treated fibre and 5 wt% of nano-clay exhibited higher tensile, flexural and impact strengths of 103.05 MPa, 162.8 MPa and 0.358 kJ/mm2 respectively, and lower water absorption rate. Moreover, the optimum fibre length and fibre weight fraction were found to be 30 mm and 20% respectively for better overall properties. These composites can be used for light and medium load applications.



2016 ◽  
Vol 47 (2) ◽  
pp. 211-232 ◽  
Author(s):  
G Rajeshkumar ◽  
V Hariharan ◽  
TP Sathishkumar ◽  
V Fiore ◽  
T Scalici

Phoenix sp. fiber-reinforced epoxy composites have been manufactured using compression molding technique. The effect of reinforcement volume content (0%, 10%, 20%, 30%, 40%, and 50%) and size (300 µm particles, 10 mm, 20 mm, and 30 mm fibers) on quasi-static and dynamic mechanical properties was investigated. Moreover, the water absorption properties of composites were analyzed at different environmental conditions (10℃, 30℃, and 60℃). For each reinforcement size, composites loaded with 40% in volume show highest tensile and flexural properties. Furthermore, composites with 300 µm particles present the best impact properties and the lowest water absorption, regardless of the environmental condition. The dynamic mechanical properties of the composites loaded with 40% in volume were analyzed by varying the reinforcement size and the load frequency (i.e., 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, and 10 Hz). It was found that the glass transition temperature of short fiber-reinforced composites is higher than that of the composite loaded with particles.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shailendra Singh Chauhan ◽  
Vaibhav Singh ◽  
Gauranshu Saini ◽  
Nitin Kaushik ◽  
Vishal Pandey ◽  
...  

Purpose The growing environmental awareness all through the world has motivated a standard change toward planning and designing better materials having good performance, which are very much suited to the environmental factors. The purpose of this study is to investigate the impact on mechanical, thermal and water absorption properties of sawdust-based composites reinforced by epoxy, and the amount of sawdust in each form. Design/methodology/approach Manufacturing of the sawdust reinforced epoxy composites is the main area of the research for promoting the green composite by having good mechanical properties, biodegradability or many applications. Throughout this research work, the authors emphasize the importance of explaining the methodology for the evaluation of the mechanical and water absorption properties of the sawdust reinforced epoxy composites used by researchers. Findings In this paper, a comprehensive review of the mechanical properties of sawdust reinforced epoxy composite is presented. This study is reported about the use of different Wt.% of sawdust composites prepared by different processes and their mechanical, thermal and water absorption properties. It is studied that after optimum filler percentage, mechanical, thermal properties gradually decrease, but water absorption property increases with Wt.% of sawdust. The changes in the microstructure are studied by using scanning electron microscopy. Originality/value The novelty of this study lies in its use of a systematic approach that offers a perspective on choosing suitable processing parameters for the fabrication of composite materials for persons from both industry and academia. A study of sawdust reinforced epoxy composites guides new researchers in the fabrication and characterization of the materials.



2015 ◽  
Vol 749 ◽  
pp. 290-294
Author(s):  
Jae Hyun Choi ◽  
Bong Goo Choi ◽  
Min A. Lee ◽  
Jae Sik Na

The epoxy composites with high thermal conductivity for metal-core printed circuit board (MCPCB) can be prepared by varnish coating and a hot press method. Alumina filler of plate-like shape was used as primary micro-filler, while plate-like alumina filler, h-BN, a-BN and s-BN filler were used for blending into the plate-like alumina filler as the secondary filler. Results showed that the secondary fillers a-BN and s-BN loaded epoxy composites have higher thermal conductivity than alumina filler single-loaded composites. Also, BN filler has high thermal conductivity, but h-BN filled epoxy composite has lower thermal conductivity than alumina filled epoxy composite. The decrease of voids in epoxy composite are very important, and the filler shape and surface modification is also necessary to achieve high thermal conductivity in epoxy composite for MCPCB



Sign in / Sign up

Export Citation Format

Share Document