scholarly journals Analisis Komparasi Metode Pemetaan Ekosistem Mangrove Menggunakan Penginderaan Jauh dan Sistem Informasi Geografis

Author(s):  
Isma Yulia Rahma

The use of tools and methods in mapping mangrove ecosystem continues to change.Nowday's trend in mapping is to use remote sensing and digital geographic Information system technology. There are several commonly used methods for mapping the mangrove ecosystem, but we should be aware that choosing the right method of analysis will greatly support the quality of research. The research method is literature review from various books and accredited scientific journals. Subsequently conducted analysis of application methods of mapping mangrove ecosystem of various case studies and research needs. Based on research, there are five methods and analysis used i.e.manual interpretation with Mirror stereoscope, NDVI (Normalized Difference Vegetation Index) as the most common analysis for mangrove distribution mapping. Multivariat PCA (Principal Component Analysis), FCD (Forest Canopy Density) model, and copmpare methods to mapping the extensive changes of mangrove ecosystems. Therefore, this article can be an input for the prospective mangrove ecosystem researchers in determining the preciese method of analysis.  

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Yulia Ivanova ◽  
Anton Kovalev ◽  
Vlad Soukhovolsky

The paper considers a new approach to modeling the relationship between the increase in woody phytomass in the pine forest and satellite-derived Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) (MODIS/AQUA) data. The developed model combines the phenological and forest growth processes. For the analysis, NDVI and LST (MODIS) satellite data were used together with the measurements of tree-ring widths (TRW). NDVI data contain features of each growing season. The models include parameters of parabolic approximation of NDVI and LST time series transformed using principal component analysis. The study shows that the current rate of TRW is determined by the total values of principal components of the satellite indices over the season and the rate of tree increment in the preceding year.


2020 ◽  
Vol 12 (2) ◽  
pp. 220 ◽  
Author(s):  
Han Xiao ◽  
Fenzhen Su ◽  
Dongjie Fu ◽  
Qi Wang ◽  
Chong Huang

Long time-series monitoring of mangroves to marine erosion in the Bay of Bangkok, using Landsat data from 1987 to 2017, shows responses including landward retreat and seaward extension. Quantitative assessment of these responses with respect to spatial distribution and vegetation growth shows differing relationships depending on mangrove growth stage. Using transects perpendicular to the shoreline, we calculated the cross-shore mangrove extent (width) to represent spatial distribution, and the normalized difference vegetation index (NDVI) was used to represent vegetation growth. Correlations were then compared between mangrove seaside changes and the two parameters—mangrove width and NDVI—at yearly and 10-year scales. Both spatial distribution and vegetation growth display positive impacts on mangrove ecosystem stability: At early growth stages, mangrove stability is positively related to spatial distribution, whereas at mature growth the impact of vegetation growth is greater. Thus, we conclude that at early growth stages, planting width and area are more critical for stability, whereas for mature mangroves, management activities should focus on sustaining vegetation health and density. This study provides new rapid insights into monitoring and managing mangroves, based on analyses of parameters from historical satellite-derived information, which succinctly capture the net effect of complex environmental and human disturbances.


2012 ◽  
Vol 23 (2) ◽  
pp. 139-172
Author(s):  
Abdullah Salman Alsalman Abdullah Salman Alsalman

Noting that Khartoum represents the most rapidly expanding city in the Sudan and taking into account that change detection operations are seldom , the present study has been initiated to attempt to produce work that synthesizes land use/land cover (LULC) to investigate change detection using GIS, remote sensing data and digital image processing techniques; estimate, evaluate and map changes that took place in the city from 1975 to 2003. The experiment used the techniques of visual inspection, write-function-memoryinsertion, image differencing, image transformation i.e. normalized difference vegetation index (NDVI), tasseled cap, principal component analysis (PCA), post-classification comparison and GIS. The results of all these various techniques were used by the authors to study change detection of the geographic locale of the test area. Image processing and GIS techniques were performed using Intergraph Image analyst 8.4 and GeoMedia professional version 6, ERDAS Imagine 8.7, and ArcGIS 9.2. Results obtained were discussed and analyzed in a comparative manner and a conclusion regarding the best method for change detection of the test area was derived.


2004 ◽  
Vol 36 (3) ◽  
pp. 1338
Author(s):  
Γ. Αιμ. Σκιάνης ◽  
Δ. Βαϊόπουλος ◽  
Κ. Νικολακόπουλος

In the present paper the statistical behaviour of the Transformed Vegetation Index TVI is studied. TVI is defined by: (equation No1) - or, alternatively, by: (equation No2) u is the numerical value of the vegetation index, χ and y are the brightness values of the near infrared and red zones, respectively. Relation (1) defines the vegetation index TVI. Relation (2) defines the vegetation index TVI'. Using appropriate distributions to describe the histograms of χ and y channels, and taking into account certain theorems from probability theory, the expressions for the distributions of TVI and TVI' values are deduced. According to these expressions, the standard deviation of TVI image is larger than that of TVI', as well as NDVI (Normalized Difference Vegetation Index). The prevailing value of the TVI' histogram is located at the right part of the tonality range. Therefore, according to the mathematical analysis, the TVI image has a better contrast than that of the NDVI and TVI' images. The TVI' has a diffuse luminance. The theoretical predictions were tested with a Landsat 7 ETM image of Zakynthos Island (western Greece) and they were found to be in accordance with the satellite data. It was also observed that lineaments with a dark tonality are expressed more clearly in the TVI image than in the TVI' image. The general conclusion is that the TVI vegetation index is preferable from TVI', since the former produces images with a larger standard deviation and a better contrast than the latter. The results and conclusions of this paper may be useful in geological and environmental research , for mapping regions with a different vegetation cover.


2020 ◽  
Vol 13 (1) ◽  
pp. 165
Author(s):  
Hillary M. O. Otieno ◽  
George N. Chemining’wa ◽  
Shamie Zingore

To mitigate low maize productivity, improve on-farm planning and policy implementation, the right fertilizer combinations and yield forecasting should be prioritized. Therefore, this research aimed at assessing the effect of applying different nutrient combinations on maize growth and yield and in-season grain yield prediction from biomass and normalized difference vegetation index (NDVI) readings. The research was done in Embu and Kirinyaga counties, in Central Kenya. Nutrient combinations tested were P+K, N+K, N+P, N+P+K, and N+P+K+Ca+Mg+Zn+B+S. The results showed consistently lowest and highest NDVI reading, dry biomass, and grain yields due to P+K and N+P+K+Ca+Mg+Zn+B+S treatments, respectively. Positive NDVI responses of 56%, 14%, 15%, and 15% were recorded with N, P, K, and combined Ca+Mg+Zn+B+S, respectively. These nutrients, in the same order, recorded 54%, 20%, 8%, and 18% positive responses with biomass. The GreenSeeker NDVI reading with grain yield and aboveground dry biomass with grain yield recorded R2 ranging from 0.23-0.53 and 0.30-0.61 (in Embu), and 0.31-0.64 and 0.30-0.50 (in Kirinyaga), respectively. When data were pooled, the prediction strength increased, reaching a maximum of 67% and 58% with NDVI and biomass, respectively. Yield prediction was even more robust when the independent variables were combined through multiple linear model at both 85 and 105 days after emergence. From this research, it is evident that the effects of balanced fertilizer application are detectable from NDVI readings—providing a tool for tracking and monitoring nutrient management effects—not just from the nitrogen perspective as commonly studied but from the combined effects of multiple nutrients. Also, grain yield could be accurately predicted early before harvesting by combining NDVI and biomass yields.


2018 ◽  
Vol 7 (7) ◽  
pp. 389
Author(s):  
Herika Cavalcante ◽  
Patrícia Silva Cruz ◽  
Leandro Gomes Viana ◽  
Daniely De Lucena Silva ◽  
José Etham De Lucena Barbosa

The aim of this study was to evaluate some parameters of water quality of semiarid reservoirs under different uses and occupation of the catchment’s soil. For this, the reservoirs Acauã and Boqueirão, belonging to the Paraíba do Norte river watershed and Middle and Upper course sub catchments, respectively, were studied. For this, water samples were collected in August, September and October 2016. From these samples, total and dissolved phosphorus, nitrate, nitrite, ammonia, chlorophyll, dissolved and suspended solids were analyzed. In addition, images of the Landsat 8 satellite were acquired for the calculation of the Normalized Difference Vegetation Index (NDVI), and for the supervised classification of the use and occupation of the sub catchments. Thus, it was observed that, in general, the Acauã reservoir presented values of phosphorus and nitrogen and solids larger than the Boqueirão reservoir, due to the greater urban area, even though it had a smaller total area of the basin. Both reservoirs presented low vegetation rates and high areas of sparse vegetation and exposed soil, increasing the propensity to soil erosion and the transport of nutrients from the basin to the reservoirs, making water quality worse or impossible.


2021 ◽  
Vol 886 (1) ◽  
pp. 012095
Author(s):  
A Zaitunah ◽  
Samsuri ◽  
Rojula ◽  
A. Susilowati ◽  
D. Elfiati ◽  
...  

Abstract West Binjai is a sub-district located in Binjai City, North Sumatra. Green Open Space is also part of the Binjai city’s planning scheme which has many benefits for the community and the environment. This research used Normalized Difference Vegetation Index (NDVI) analysis and NDVI value classification results in the distribution of vegetation density. Analysis of changes in vegetation density was carried out between 2015 and 2020 in West Binjai. The largest change in the area of vegetation density classes in the West Binjai between 2015 and 2020 was the increase in the area of the high dense class to 19.13%. The sub-district has green open spaces in the form of sub-district parks, public cemeteries, road green lane, river bank and private green open spaces. These green open spaces were in the low dense, medium, dense and high dense classes. There is a need for rearrangement of green open spaces, especially those within low dense class. Replanting trees are also essential to increase the quality of the green area. Improving the quality of green space will lead to the enhancement of quality of environment.


SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 459-473 ◽  
Author(s):  
J. M. Terrón ◽  
J. Blanco ◽  
F. J. Moral ◽  
L. A. Mancha ◽  
D. Uriarte ◽  
...  

Abstract. Precision agriculture is a useful tool to assess plant growth and development in vineyards. The present study focused on spatial and temporal analysis of vegetation growth variability, in four irrigation treatments with four replicates. The research was carried out in a vineyard located in the southwest of Spain during the 2012 and 2013 growing seasons. Two multispectral sensors mounted on an all-terrain vehicle (ATV) were used in the different growing seasons/stages in order to calculate the vineyard normalized difference vegetation index (NDVI). Soil apparent electrical conductivity (ECa) was also measured up to 0.8 m soil depth using an on-the-go geophysical sensor. All measured data were analysed by means of principal component analysis (PCA). The spatial and temporal NDVI and ECa variations showed relevant differences between irrigation treatments and climatological conditions.


2012 ◽  
Vol 610-613 ◽  
pp. 3562-3565
Author(s):  
Xi Chen ◽  
Yong Wang

Based on remote sensing image, the spectral information of urban Greenbelt in Guangzhou City was extracted from TM image by ENVI4.7. After finishing image preprocessing, then used 4 methods (such as principal component analysis, tasseled cap transformation, the normalized difference vegetation index(NDVI) method, SOFM artifical neutral network method) extract greenbelt information of Guangzhou City, and compared the images produced by four methods, according to the actual situation of the study area, we find that SOFM neutral network has the best classification effect.


Sign in / Sign up

Export Citation Format

Share Document