STUDIES ON THE INTERACTION OF LONG-ACTING THYROID STIMULATOR (LATS) WITH SOLUBLE THYROID FRACTIONS

1971 ◽  
Vol 68 (4) ◽  
pp. 625-644 ◽  
Author(s):  
N. Amino ◽  
K. Miyai ◽  
M. Azukizawa ◽  
Y. Kumahara

ABSTRACT The specificity, stability and reversibility of the in vitro interaction of LATS with soluble human thyroid fractions was studied. With regard to tissue specificity, the cell sap obtained from human liver, spleen, kidney, and muscle did not inhibit the LATS activity while the same amount of thyroid cell sap significantly inhibited it. When the LATS inhibitory activity in thyroid subcellular fractions was compared, the microsomal fraction was more active than cell sap or solubilized microsomes in terms of milligram of protein, but the cell sap had considerable activity as based on the original thyroid weight. Lyophilization of cell sap did not reduce the LATS inhibitory activity, but treatment with 2 m NaSCN and 6 m urea apparently destroyed this capacity. Acid treatment of cell sap at pH 2.5 and at 3.0 completely destroyed its ability to inhibit LATS activity. Inhibition of LATS activity was roughly proportional to the amount of thyroid cell sap. Human TSH, on the other hand, was not inhibited by cell sap which had a significant inhibitory effect on LATS. LATS activity was more effectively inhibited when a mixture of LATS-IgG and thyroid cell sap was incubated for 96 hours than for 12 hours. The inhibition of LATS activity by thyroid cell sap was partially but significantly reversed by acid treatment, as observed in experiment using microsomes. When thyroid cell sap was fractionated by gel filtration on Sepharose 4B, LATS inhibitory activity was distributed in all the fractions including the 27S to 4S proteins. In DEAE-cellulose column chromatography, LATS inhibitory activity tended to be eluted at a higher ionic strength. In each fraction of Sepharose 4B and DEAE-cellulose, LATS inhibitory activity was found to be unrelated to the thyroglobulin content. It is believed that the inhibition of LATS activity by thyroid cell sap is compatible with an antigen-antibody reaction and that the LATS inhibitor may not be a thyroglobulin itself but a more negatively charged heterogeneous substance.

1992 ◽  
Vol 1 (1) ◽  
pp. 49-54 ◽  
Author(s):  
W. M. S. C. Tamashiro ◽  
B. M. Tavares-Murta ◽  
F. Q. Cunha ◽  
M. C. Roque-Barreira ◽  
R. M. D. Nogueira ◽  
...  

Inhibitory effect upon neutrophil migration to the inflammatory focus was previously detected in the cell-free incubation fluid of lipopolysaccharide (LPS)-stimulated macrophage monolayers. In the present study we showed that the neutrophil recruitment inhibitory activity from this supernatant was mainly detected in a fraction (P2) obtained by gel filtration chromatography on Sephacryl S-300. P2 fraction was able to inhibit ‘in vivo’ neutrophil emigration induced by different inflammatory stimuli, but it did not affect ‘in vitro’ neutrophil chemotaxis induced by FMLP. When injected intravenously, P2 inhibited oedema induced by carrageenin or immunological stimulus but not the oedema induced by dextran, thus affecting cell-dependent inflammatory responses. It was observed that P2 also induced neutrophil migration when injected locally in peritoneal cavities. This activity was significantly reduced by pretreatment of the animals with dexamethasone. Cytokines, such as IL-8 and TNF-α that are known to exhibit inhibitory effect upon neutrophil migration, were not detected in P2 fraction by highly sensitive assays. Overall the results suggest the existence of a novel cytokine exhibiting ‘in vivo’ neutrophil inhibitory activity, referred as NRIF.


1970 ◽  
Vol 46 (1) ◽  
pp. 45-54 ◽  
Author(s):  
B. R. SMITH

SUMMARY Most of the long-acting thyroid stimulator (LATS)-absorbing activity of human thyroid homogenates was shown to be in a soluble fraction containing several components including thyroglobulin, haemoglobulin and serum proteins. Salt precipitation and gel filtration studies indicated that the absorbing activity was not associated with thyroglobulin of high molecular weight, but with a 4s fraction. This 4s fraction has been shown to contain thyroid specific antigens and these may be important in LATS absorption.


1971 ◽  
Vol 66 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Gerald Burke

ABSTRACT A long-acting thyroid stimulator (LATS), distinct from pituitary thyrotrophin (TSH), is found in the serum of some patients with Graves' disease. Despite the marked physico-chemical and immunologic differences between the two stimulators, both in vivo and in vitro studies indicate that LATS and TSH act on the same thyroidal site(s) and that such stimulation does not require penetration of the thyroid cell. Although resorption of colloid and secretion of thyroid hormone are early responses to both TSH and LATS, available evidence reveals no basic metabolic pathway which must be activated by these hormones in order for iodination reactions to occur. Cyclic 3′, 5′-AMP appears to mediate TSH and LATS effects on iodination reactions but the role of this compound in activating thyroidal intermediary metabolism is less clear. Based on the evidence reviewed herein, it is suggested that the primary site of action of thyroid stimulators is at the cell membrane and that beyond the(se) primary control site(s), there exists a multifaceted regulatory system for thyroid hormonogenesis and cell growth.


1972 ◽  
Vol 71 (3) ◽  
pp. 443-453 ◽  
Author(s):  
Olav Trygstad ◽  
Irene Foss

ABSTRACT A lipid-mobilizing factor (LMF) with an adipotrophic effect in human and animal fat tissue has been prepared from human pituitary glands. The addition of normal human serum to LMF reduced its lipolytic effect, and it was completely abolished by serum from a group of obese patients, whereas the lipolysis was not influenced by serum from patients with generalized lipodystrophy. By DEAE-cellulose chromatography of human serum the inhibitory effect on LMF was found to be present in a protein fraction less acidic than the main serum albumin fraction. The inhibitory fraction was deprived of some contaminants by Sephadex gel filtration. Disc electrophoresis demonstrated the presence of three components in the inhibitory protein (IP), and they were identified as albumin, transferin, and haemopexin by immuno-electrophoresis. Precipitation of these proteins by their rabbit antisera demonstrated that the inhibitory effect was present in the albumin fraction. Insulin like activity was not observed in IP. A protein binding of LMF by IP could not be demonstrated. Incubation at 37°C for one hour of a mixture of LMF and IP eliminated the electrophoretic picture of LMF. It is concluded that the inhibitory effect of human serum may be due to proteolysis of LMF.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1518
Author(s):  
Maria Qatato ◽  
Vaishnavi Venugopalan ◽  
Alaa Al-Hashimi ◽  
Maren Rehders ◽  
Aaron D. Valentine ◽  
...  

Trace amine-associated receptor 1 (rodent Taar1/human TAAR1) is a G protein-coupled receptor that is mainly recognized for its functions in neuromodulation. Previous in vitro studies suggested that Taar1 may signal from intracellular compartments. However, we have shown Taar1 to localize apically and on ciliary extensions in rodent thyrocytes, suggesting that at least in the thyroid, Taar1 may signal from the cilia at the apical plasma membrane domain of thyrocytes in situ, where it is exposed to the content of the follicle lumen containing putative Taar1 ligands. This study was designed to explore mouse Taar1 (mTaar1) trafficking, heterologously expressed in human and rat thyroid cell lines in order to establish an in vitro system in which Taar1 signaling from the cell surface can be studied in future. The results showed that chimeric mTaar1-EGFP traffics to the apical cell surface and localizes particularly to spherical structures of polarized thyroid cells, procilia, and primary cilia upon serum-starvation. Moreover, mTaar1-EGFP appears to form high molecular mass forms, possibly homodimers and tetramers, in stably expressing human thyroid cell lines. However, only monomeric mTaar1-EGFP was cell surface biotinylated in polarized human thyrocytes. In polarized rat thyrocytes, mTaar1-EGFP is retained in the endoplasmic reticulum, while cilia were reached by mTaar1-EGFP transiently co-expressed in combination with an HA-tagged construct of the related mTaar5. We conclude that Taar1 trafficking to cilia depends on their integrity. The results further suggest that an in vitro cell model was established that recapitulates Taar1 trafficking in thyrocytes in situ, in principle, and will enable studying Taar1 signaling in future, thus extending our general understanding of its potential significance for thyroid autoregulation.


Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4197-4205 ◽  
Author(s):  
J.M. Herbert ◽  
J.P. Hérault ◽  
A. Bernat ◽  
R.G.M. van Amsterdam ◽  
J.C. Lormeau ◽  
...  

Abstract SANORG 34006 is a new sulfated pentasaccharide obtained by chemical synthesis. It is an analog of the “synthetic pentasaccharide” (SR 90107/ ORG 31540) which represents the antithrombin (AT) binding site of heparin. SANORG 34006 showed a higher affinity to human AT than SR 90107/ORG 31540 (kd = 1.4 ± 0.3 v 48 ± 11 nmol/L), and it is a potent and selective catalyst of the inhibitory effect of AT on factor Xa (1,240 ± 15 anti–factor Xa U/mg v850 ± 27 anti-factor Xa U/mg for SR 90107/ORG 31540). In vitro, SANORG 34006 inhibited thrombin generation occurring via both the extrinsic and intrinsic pathway. After intravenous (IV) or subcutaneous (SC) administration to rabbits, SANORG 34006 displayed a long-lasting anti–factor Xa activity and inhibition of thrombin generation (TG) ex vivo. SANORG 34006 was slowly eliminated after IV or SC administration to rats, rabbits, and baboons, showed exceptionally long half-lives (between 9.2 hours in rats and 61.9 hours in baboons), and revealed an SC bioavailability near 100%. SANORG 34006 displayed antithrombotic activity by virtue of its potentiation of the anti–factor Xa activity of AT. It strongly inhibited thrombus formation in experimental models of thromboplastin/stasis-induced venous thrombosis in rats (IV) and rabbits (SC) (ED50values = 40.0 ± 3.4 and 105.0 ± 9.4 nmol/kg, respectively). The duration of its antithrombotic effects closely paralleled the ex vivo anti–factor Xa activity. SANORG 34006 enhanced rt-PA–induced thrombolysis and inhibited accretion of125I-fibrinogen onto a preformed thrombus in the rabbit jugular vein suggesting that concomitant use of SANORG 34006 during rt-PA therapy might be helpful in facilitating thrombolysis and preventing fibrin accretion onto the thrombus under lysis. Contrary to standard heparin, SANORG 34006 did not enhance bleeding in a rabbit ear incision model at a dose that equals 10 times the antithrombotic ED50 in this species and, therefore, exhibited a favorable therapeutic index. We suggest that SANORG 34006 is a promising compound in the treatment and prevention of various thrombotic diseases.


2014 ◽  
Vol 50 (4) ◽  
pp. 851-858 ◽  
Author(s):  
Isabela Moreira Baumgratz de Paula ◽  
Flávia Costa Moraes ◽  
Orlando Vieira de Souza ◽  
Célia Hitomi Yamamoto

Rosmarinus officinalis, which belongs to the Lamiaceaefamily, is a species of medicinal flora with therapeutic properties. In order to exploit the benefits of these properties, a mouthwash formulation was developed, with careful selection of raw materials to meet pharmacotechnical requirements. Extracts of the plant were incorporated into a mouthwash, which was shown to have inhibitory action in vitro against the micro-organisms commonly found in periodontics. Controls for assessing the quality of the drugs were carried out, quantifying phenols and flavonoids as chemical markers. Mouthwash solutions were formulated containing 0.1, 5 and 10% ethanol extract of R. officinalis; and 0.05, 5 and 10% of the hexane fraction of R. officinalis. In order to evaluate synergism, ethanol extract and hexane fraction were also added to formulations containing 0.05% sodium fluoride and 0.12% chlorhexidine digluconate. These formulations were assessed for inhibitory effect against the specific microorganisms involved in the process of bacterial plaque formation, S. mutans(ATCC25175) and C. albicans(ATCC 10231), frequently found in cases of oral infections. The agar diffusion method was used to evaluate the inhibitory activity of extracts and formulations. All mouthwash solutions displayed inhibitory activity having higher sensitivity to S. mutansfor the 5% ethanol extract+0.05% sodium fluoride, and greater sensitivity to C. albicansfor the 10% hexane fraction. Results were characterized by the appearance of a growth inhibition halo, justifying the utilization and association of extracts of R. officinalis.


2000 ◽  
Vol 11 (9) ◽  
pp. 3155-3168 ◽  
Author(s):  
Brandon M. Sullivan ◽  
Kimberly J. Harrison-Lavoie ◽  
Vladimir Marshansky ◽  
Herbert Y. Lin ◽  
John H. Kehrl ◽  
...  

COPI, a protein complex consisting of coatomer and the small GTPase ARF1, is an integral component of some intracellular transport carriers. The association of COPI with secretory membranes has been implicated in the maintenance of Golgi integrity and the normal functioning of intracellular transport in eukaryotes. The regulator of G protein signaling, RGS4, interacted with the COPI subunit β′-COP in a yeast two-hybrid screen. Both recombinant RGS4 and RGS2 bound purified recombinant β′-COP in vitro. Endogenous cytosolic RGS4 from NG108 cells and RGS2 from HEK293T cells cofractionated with the COPI complex by gel filtration. Binding of β′-COP to RGS4 occurred through two dilysine motifs in RGS4, similar to those contained in some aminoglycoside antibiotics that are known to bind coatomer. RGS4 inhibited COPI binding to Golgi membranes independently of its GTPase-accelerating activity on Giα. In RGS4-transfected LLC-PK1 cells, the amount of COPI in the Golgi region was considerably reduced compared with that in wild-type cells, but there was no detectable difference in the amount of either Golgi-associated ARF1 or the integral Golgi membrane protein giantin, indicating that Golgi integrity was preserved. In addition, RGS4 expression inhibited trafficking of aquaporin 1 to the plasma membrane in LLC-PK1 cells and impaired secretion of placental alkaline phosphatase from HEK293T cells. The inhibitory effect of RGS4 in these assays was independent of GTPase-accelerating activity but correlated with its ability to bind COPI. Thus, these data support the hypothesis that these RGS proteins sequester coatomer in the cytoplasm and inhibit its recruitment onto Golgi membranes, which may in turn modulate Golgi–plasma membrane or intra-Golgi transport.


2013 ◽  
Vol 49 (4) ◽  
pp. 803-809
Author(s):  
Monica Lacerda Lopes Martins ◽  
Henrique Poltronieri Pacheco ◽  
Iara Giuberti Perini ◽  
Dominik Lenz ◽  
Tadeu Uggere de Andrade ◽  
...  

In 1820, French naturalist August Saint Hillaire, during a visit in Espírito Santo (ES), a state in southeastern Brazil, reported a popular use of Cyperaceae species as antidote to snake bites. The plant may even have a hypotensive effect, though it was never properly researched. The in vitro inhibitory of the angiotensin converting enzyme (ACE) activity of eigth ethanolic extracts of Cyperaceae was evaluated by colorimetric assay. Total phenolic and flavonoids were determined using colorimetric assay. The hypotensive effect of the active specie (Rhychonospora exaltata, ERE) and the in vivo ACE assay was measured in vivo using male Wistar Kyoto (ERE, 0.01-100mg/kg), with acetylcholine (ACh) as positive control (5 µg/kg, i.v.). The evaluation of ACE in vivo inhibitory effect was performed comparing the mean arterial pressure before and after ERE (10 mg/kg) in animals which received injection of angiotensin I (ANG I; 0,03, 03 and 300 µg/kg, i.v.). Captopril (30 mg/kg) was used as positive control. Bulbostylis capillaris (86.89 ± 15.20%) and ERE (74.89 ± 11.95%, ERE) were considered active in the in vitro ACE inhibition assay, at 100 µg/mL concentration. ACh lead to a hypotensive effect before and after ERE's curve (-40±5% and -41±3%). ERE showed a dose-dependent hypotensive effect and a in vivo ACE inhibitory effect. Cyperaceae species showed an inhibitory activity of ACE, in vitro, as well as high content of total phenolic and flavonoids. ERE exhibited an inhibitory effect on both in vitro and in vivo ACE. The selection of species used in popular medicine as antidotes, along with the in vitro assay of ACE inhibition, might be a biomonitoring method for the screening of new medicinal plants with hypotensive properties.


2011 ◽  
Vol 63 (3) ◽  
pp. 747-756 ◽  
Author(s):  
A.K.M. Asaduzzaman ◽  
Habibur Rahman ◽  
Tanzima Yeasmin

An acid phosphatase has been isolated and purified from an extract of a germinating black gram seedling. The method was accomplished by gel filtration of a germinating black gram seedling crude extract on sephadex G-75 followed by ion exchange chromatography on DEAE cellulose. The acid phosphatase gave a single band on SDS-polyacrylamide slab gel electrophoresis. The molecular weight of the acid phosphatase determined by SDS-polyacrylamide slab gel electrophoresis was estimated to be 25 kDa. The purified enzyme showed maximum activity at pH 5 and at temperature of 55?C. Mg2+, Zn2+ and EDTA had an inhibitory effect on the activity of the acid phosphatase. Black gram seedling acid phosphatase was activated by K+, Cu2+ and Ba2+. The Km value of the enzyme was found to be 0.49 mM for pNPP as substrate.


Sign in / Sign up

Export Citation Format

Share Document