Effect of serum thyrotropin levels on the concentration of messenger RNA for thyroid peroxidase in the rat

1992 ◽  
Vol 126 (5) ◽  
pp. 460-466 ◽  
Author(s):  
Ronald P Magnusson ◽  
Bo Yu ◽  
Veronica Brennan

The effect of serum TSH on rat thyroid peroxidase mRNA levels was studied in order to investigate the regulation of thyroid peroxidase gene expression in vivo. A nearly full-length rat thyroid peroxidase cDNA clone was isolated from a bacteriophage cDNA library synthesized using poly A+ RNA isolated from the thyroids of propylthiouracil-treated rats. cDNA probes derived from this clone were used to study rat thyroid peroxidase mRNA levels in response to the level of serum TSH. Two major rat thyroid peroxidase mRNA bands were detected on Northern blots of total cellular RNA (at 3.2 kb and at 3.7kb). Injection of thyroxine, which lowered the levels of serum TSH, also lowered the steady-state levels of both rat thyroid peroxidase mRNAs, whereas treatment with methimazole, which increased serum TSH, increased both rat thyroid peroxidase mRNA levels. In hypophysectomized rats 10 days postoperative, very low levels of thyroid peroxidase mRNA were observed. Injection of bovine TSH (1 IU/day) increased rat thyroid peroxidase mRNA expression, preferentially in the 3.2 kb band. These results clearly demonstrate that TSH regulates rat thyroid peroxidase mRNA levels in vivo.

1983 ◽  
Vol 102 (4) ◽  
pp. 531-534 ◽  
Author(s):  
Makiko Yamamoto ◽  
Kazuro Kaise ◽  
Hirofumi Kitaoka ◽  
Katsumi Yoshida ◽  
Nobuko Kaise ◽  
...  

Abstract. A 36 year old man with a diffuse goitre, signs of mild hypothyroidism, strikingly low levels of T4 (0.9 μg/dl) and T3 (24 ng/dl), elevated TSH (140 μU/ml) and elevated microsomal haemagglutination antibody (MCHA, 1:409 600), subsequently became non-goitrous and euthyroid with a decreased titre of antimicrosomal antibody without any medication. At the time of surgical biopsy, serum levels of T4 and T3 had risen to the normal range (4.6 μg/dl and 73 ng/dl, respectively), serum TSH had decreased to 30 μU/ml and the titre of MCHA to 1:25 600. Thyroid specimens showed Hashimoto's thyroiditis. The activity of thyroid peroxidase (TPO) was normal. The latest examination, 1 year and 3 months after initial evaluation, showed that the patient remained euthyroid with no goitre, that serum thyroid hormones were within the normal range (T4 7.7 μg/dl and T3 97 ng/dl), and that TSH was not detectable. The titre of MCHA decreased strikingly to 1:400.


1987 ◽  
Vol 115 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Kanji Kasagi ◽  
Junji Konishi ◽  
Yasuhiro Iida ◽  
Yasutaka Tokuda ◽  
Keisuke Arai ◽  
...  

Abstract. A sensitive, precise and practical assay for thyroid stimulating antibodies was developed in which poorly differentiated rat thyroid cells (FRTL-5) were exposed to crude immunoglobulin fractions precipitated from serum with 15% polyethylene glycol under hypotonic conditions. After the incubation at 37°C for 2 h, cAMP released into Hank's medium without NaCl was determined by radioimmunoassay. The removal of NaCl from the isotonic Hank's medium greatly enhanced cAMP production in response to both TSH and thyroid stimulating antibodies. The assay was sensitive enough to elicit an approximately 30-fold increase in cAMP at 10 mU/l bovine TSH. Thyroid stimulating activities measured using FRTL-5 cells significantly correlated with those measured using cultured porcine (r = 0.918, N = 72) or human (r = 0.830, N = 23) thyroid cells. Thyroid stimulating activities were detected in all of the 50 patients with hyperthyroid Graves' disease, the 14 patients with recurrent hyperthyroid Graves' disease, and the 25 patients with ophthalmic Graves' disease. Thyroid stimulating activity was also detected in some patients (9/24, 37.5%) with Hashimoto's thyroiditis whose serum TSH concentrations were higher than 30 mU/l. However, it was completely abolished by pre-treatment of the sera with anti-TSH antibodies. Although thyroid stimulating activities were detected in one of the patients with simple goitre (N = 10) and in one with thyroid cancer (N = 10), none of the patients with silent thyroiditis (N = 7), adenomatous goitre (N = 11), and thyroid adenoma (N = 9) were positive for thyroid stimulating antibodies.


1982 ◽  
Vol 152 (2) ◽  
pp. 661-668
Author(s):  
J A Plumbridge ◽  
M Springer

The construction of three lambda bacteriophages containing parts of the structural gene for threonyl-tRNA synthetase, thrS, and those for the two subunits of phenylalanyl-tRNA synthetases, pheS and pheT, is described. These phages were used as hybridization probes to measure the in vivo levels of mRNA specific to these three genes. Plasmid pB1 carries the three genes thrS, pheS, and pheT, and strains carrying the plasmid show enhanced levels of mRNA corresponding to these genes. Although the steady-state levels of threonyl-tRNA synthetase and phenylalanyl-tRNA synthetase produced by the presence of the plasmid differed by a factor of 10, their pulse-labeled mRNA levels were about the same. Mutant derivatives of pB1 were also analyzed. Firstly, a cis-acting insertion located before the structural genes for phenylalanyl-tRNA synthetase caused a major decrease in both pheS and pheT mRNA. Secondly, mutations affecting either structural gene pheS or pheT caused a reduction in the mRNA levels for both pheS and pheT. This observation suggests that autoregulation plays a role in the expression of phenylalanyl-tRNA synthetase.


1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3785
Author(s):  
Wen-Ling Wang ◽  
Guan-Ci Hong ◽  
Peng-Ju Chien ◽  
Yu-Hao Huang ◽  
Hsueh-Te Lee ◽  
...  

Endometrial cancer (EC) is the second most common gynecological malignancy worldwide. Tribbles pseudokinase 3 (TRIB3) is a scaffolding protein that regulates intracellular signal transduction, and its role in tumor development is controversial. Here, we investigated the biological function of TRIB3 in EC. We found that the messenger RNA (mRNA) expression level of TRIB3 was significantly and positively correlated with shorter overall survival of EC patients in The Cancer Genome Atlas database. The protein expression of TRIB3 was found to be significantly increased in EC cancer stem cells (CSCs) enriched by tumorsphere cultivation. Knockdown of TRIB3 in EC cells suppressed tumorsphere formation, the expression of cancer stemness genes, and the in vivo tumorigenesis. The expression of β-catenin at both the protein and the mRNA levels was downregulated upon TRIB3 silencing. TRIB3 was found to interact with E74 Like ETS transcription factor 4 (ELF4) in the nucleus and bound to ELF4 consensus sites within the catenin beta 1 (CTNNB1) promoter in EC cell lines. These data indicated that TRIB3 may regulate CTNNB1 transcription by enhancing the recruitment of ELF4 to the CTNNB1 promoter. In conclusion, our results suggest that TRIB3 plays an oncogenic role in EC and positively regulates the self-renewal and tumorigenicity of EC-CSCs. Targeting TRIB3 is considered as a potential therapeutic strategy in future EC therapy.


2001 ◽  
Vol 280 (3) ◽  
pp. R879-R888 ◽  
Author(s):  
J. Andres Melendez ◽  
James M. Vinci ◽  
John J. Jeffrey ◽  
Brian D. Wilcox

Interleukin-1 (IL-1) has been implicated as a participant in preterm labor that is induced by bacterial infection. Previously, we showed that serotonin-induced production of IL-1α by myometrial smooth muscle cells in vitro is also essential for the synthesis of interstitial collagenase. It is therefore likely that IL-1α production in uterine tissues has implications for both the normal physiology of involution and for the pathophysiological mechanisms of preterm labor. The objective of this study was to characterize the serotonin-induced production of IL-1α by myometrial cultures in vitro and to assess the production of IL-1α and its relationship to collagenase production in vivo during pregnancy and the postpartum period. Immunohistochemistry demonstrated IL-1α protein in the nuclei and cytoplasm of serotonin-treated myometrial cells. IL-1α levels were decreased by treatment with progesterone or IL-1-receptor antagonist but were unaffected by lipopolysaccharide. Western analysis of myometrium from pregnant rats showed low levels of IL-1α during midpregnancy with increased concentrations at days 21 and 22 and postpartum. IL-1α mRNA levels also increased from days 15to 22. Levels of mRNA for IL-1β also increased, although to a lesser degree than IL-1α. Both mRNAs decreased postpartum. Conversely, mRNA for interstitial collagenase was barely detectable at term but increased postpartum. Together, these data show that serotonin stimulates IL-1α production in vitro and indicate that normal myometrium from pregnant rats is an identifiable source of IL-1 during late pregnancy. The findings are consistent with the possibility that myometrial IL-1α participates in normal labor as well as the postpartum production of interstitial collagenase.


2020 ◽  
Vol 117 (20) ◽  
pp. 10888-10896 ◽  
Author(s):  
Shusaku Masuda ◽  
Rajesh Narasimamurthy ◽  
Hikari Yoshitane ◽  
Jae Kyoung Kim ◽  
Yoshitaka Fukada ◽  
...  

Casein kinase 1 (CK1) plays a central role in regulating the period of the circadian clock. In mammals, PER2 protein abundance is regulated by CK1-mediated phosphorylation and proteasomal degradation. On the other hand, recent studies have questioned whether the degradation of the core circadian machinery is a critical step in clock regulation. Prior cell-based studies found that CK1 phosphorylation of PER2 at Ser478 recruits the ubiquitin E3 ligase β-TrCP, leading to PER2 degradation. Creation of this phosphodegron is regulated by a phosphoswitch that is also implicated in temperature compensation. However, in vivo evidence that this phosphodegron influences circadian period is lacking. Here, we generated and analyzed PER2-Ser478Ala knock-in mice. The mice showed longer circadian period in behavioral analysis. Molecularly, mutant PER2 protein accumulated in both the nucleus and cytoplasm of the mouse liver, while Per2 messenger RNA (mRNA) levels were minimally affected. Nuclear PER1, CRY1, and CRY2 proteins also increased, probably due to stabilization of PER2-containing complexes. In mouse embryonic fibroblasts derived from PER2-Ser478Ala::LUC mice, three-phase decay and temperature compensation of the circadian period was perturbed. These data provide direct in vivo evidence for the importance of phosphorylation-regulated PER2 stability in the circadian clock and validate the phosphoswitch in a mouse model.


Development ◽  
1989 ◽  
Vol 106 (3) ◽  
pp. 449-455 ◽  
Author(s):  
W.M. Kulyk ◽  
W.B. Upholt ◽  
R.A. Kosher

A critical event in limb cartilage differentiation is a transient cellular condensation process in which prechondrogenic mesenchymal cells become closely juxtaposed and interact with one another prior to initiating cartilage matrix deposition. Fibronectin (FN) has been suggested to be involved in regulating the onset of condensation and chondrogenesis by actively promoting prechondrogenic aggregate formation during the process. We have performed a systematic quantitative study of the expression of the FN gene during the progression of chondrogenesis in vitro and in vivo. In high-density micromass cultures of limb mesenchymal cells, FN mRNA levels increase about 5-fold coincident with the crucial condensation process, and remain relatively high during the initial deposition of cartilage matrix by the cells. Thereafter, FN mRNA levels progressively decline to relatively low levels as the cultures form a virtually uniform mass of cartilage. The changes in FN mRNA levels in vitro are paralleled closely by changes in the relative rate of FN synthesis as determined by pulse-labeling and immunoprecipitation analysis. The relative rate of FN synthesis increases 4- to 5-fold at condensation and the onset of chondrogenesis, after which it progressively declines to low levels as cartilage matrix accumulates. High levels of FN gene expression also occur at the onset of chondrogenesis in vivo. In the proximal central core regions of the limb bud in which condensation and cartilage matrix deposition are being initiated, FN mRNA levels and the relative rates of FN synthesis become progressively about 4-fold higher than in the distal subridge region, which consists of undifferentiated mesenchymal cells that have not yet initiated condensation.(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
1992 ◽  
Vol 80 (2) ◽  
pp. 530-539 ◽  
Author(s):  
M Hanspal ◽  
JS Hanspal ◽  
R Kalraiya ◽  
SC Liu ◽  
KE Sahr ◽  
...  

To study the changes in the synthesis of the major membrane skeletal proteins, their assembly on the membrane, and their turnover during terminal red blood cell maturation in vivo, we have compared early proerythroblasts and late erythroblasts obtained from the spleens of mice at different times after infection with the anemia-inducing strain of Friend virus (FVA). Metabolic labeling of these cells indicates striking differences between early and late erythroblasts. In early erythroblasts, spectrin and ankyrin are synthesized in large amounts in the cytosol with proportionately high levels of spectrin and ankyrin messenger RNA (mRNA). In contrast, only small amounts of these polypeptides are incorporated into the skeleton, which is markedly unstable. In late erythroblasts, however, the synthesis of spectrin and ankyrin and their mRNA levels are substantially reduced, yet the net amounts of these polypeptides assembled in the membrane skeleton are markedly increased, and the membrane skeleton becomes stable with no detectable protein turnover. The mRNA levels and the synthesis of the band 3 and 4.1 proteins are increased considerably in terminally differentiated normoblasts with a concomitant increase in the net amount and the half-life of the newly assembled spectrin and ankyrin. Thus, the increased accumulation of spectrin and ankyrin at the late erythroblast stage is a consequence of an increased recruitment of these proteins on the membrane and an increase in their stability rather than a transcriptional upregulation. This is in contrast to band 3 and 4.1 proteins, which accumulate in direct proportion to their mRNA levels and rates of synthesis. These results suggest a key role for the band 3 and 4.1 proteins in conferring a long-term stability to the membrane skeleton during terminal red blood cell differentiation.


Sign in / Sign up

Export Citation Format

Share Document