Fibronectin gene expression during limb cartilage differentiation

Development ◽  
1989 ◽  
Vol 106 (3) ◽  
pp. 449-455 ◽  
Author(s):  
W.M. Kulyk ◽  
W.B. Upholt ◽  
R.A. Kosher

A critical event in limb cartilage differentiation is a transient cellular condensation process in which prechondrogenic mesenchymal cells become closely juxtaposed and interact with one another prior to initiating cartilage matrix deposition. Fibronectin (FN) has been suggested to be involved in regulating the onset of condensation and chondrogenesis by actively promoting prechondrogenic aggregate formation during the process. We have performed a systematic quantitative study of the expression of the FN gene during the progression of chondrogenesis in vitro and in vivo. In high-density micromass cultures of limb mesenchymal cells, FN mRNA levels increase about 5-fold coincident with the crucial condensation process, and remain relatively high during the initial deposition of cartilage matrix by the cells. Thereafter, FN mRNA levels progressively decline to relatively low levels as the cultures form a virtually uniform mass of cartilage. The changes in FN mRNA levels in vitro are paralleled closely by changes in the relative rate of FN synthesis as determined by pulse-labeling and immunoprecipitation analysis. The relative rate of FN synthesis increases 4- to 5-fold at condensation and the onset of chondrogenesis, after which it progressively declines to low levels as cartilage matrix accumulates. High levels of FN gene expression also occur at the onset of chondrogenesis in vivo. In the proximal central core regions of the limb bud in which condensation and cartilage matrix deposition are being initiated, FN mRNA levels and the relative rates of FN synthesis become progressively about 4-fold higher than in the distal subridge region, which consists of undifferentiated mesenchymal cells that have not yet initiated condensation.(ABSTRACT TRUNCATED AT 250 WORDS)

2001 ◽  
Vol 280 (3) ◽  
pp. R879-R888 ◽  
Author(s):  
J. Andres Melendez ◽  
James M. Vinci ◽  
John J. Jeffrey ◽  
Brian D. Wilcox

Interleukin-1 (IL-1) has been implicated as a participant in preterm labor that is induced by bacterial infection. Previously, we showed that serotonin-induced production of IL-1α by myometrial smooth muscle cells in vitro is also essential for the synthesis of interstitial collagenase. It is therefore likely that IL-1α production in uterine tissues has implications for both the normal physiology of involution and for the pathophysiological mechanisms of preterm labor. The objective of this study was to characterize the serotonin-induced production of IL-1α by myometrial cultures in vitro and to assess the production of IL-1α and its relationship to collagenase production in vivo during pregnancy and the postpartum period. Immunohistochemistry demonstrated IL-1α protein in the nuclei and cytoplasm of serotonin-treated myometrial cells. IL-1α levels were decreased by treatment with progesterone or IL-1-receptor antagonist but were unaffected by lipopolysaccharide. Western analysis of myometrium from pregnant rats showed low levels of IL-1α during midpregnancy with increased concentrations at days 21 and 22 and postpartum. IL-1α mRNA levels also increased from days 15to 22. Levels of mRNA for IL-1β also increased, although to a lesser degree than IL-1α. Both mRNAs decreased postpartum. Conversely, mRNA for interstitial collagenase was barely detectable at term but increased postpartum. Together, these data show that serotonin stimulates IL-1α production in vitro and indicate that normal myometrium from pregnant rats is an identifiable source of IL-1 during late pregnancy. The findings are consistent with the possibility that myometrial IL-1α participates in normal labor as well as the postpartum production of interstitial collagenase.


2005 ◽  
Vol 288 (4) ◽  
pp. E798-E804 ◽  
Author(s):  
Matthew R. Ricci ◽  
Mi-Jeong Lee ◽  
Colleen D. Russell ◽  
Yanxin Wang ◽  
Sean Sullivan ◽  
...  

In vivo and in vitro studies indicate that β-adrenergic receptor agonists decrease leptin release from fat cells in as little as 30 min. Our objective was to determine whether alterations in leptin biosynthesis or secretion were involved in the short-term adrenergic regulation of leptin in human and rat adipose tissue. Isoproterenol (Iso) decreased leptin release from incubated adipose tissue of both nonobese and obese subjects to similar extent (−28 vs. −21% after 3 h). Inhibition of protein synthesis with cycloheximide did not block the effect of Iso on leptin release from human adipose tissue, suggesting that the Iso effect is independent of leptin synthesis. Iso also tended to increase tissue leptin content at the end of the 3-h incubation, as expected from the observed inhibition of release. Consistent with a posttranslational mechanism, Iso treatment did not affect leptin mRNA levels or relative rate of leptin biosynthesis as directly assessed by [35S]methionine incorporation into immunoprecipitable leptin. In contrast to these results in human adipose tissues, Iso did not decrease basal leptin release from rat adipose tissue. However, Iso did decrease insulin-stimulated leptin release by inhibiting the ability of insulin to increase leptin biosynthesis without detectably affecting leptin mRNA levels. Thus, in both human and rat, adrenergic regulation of posttranscriptional events (secretion in humans, translation in rats) may contribute to the rapid decline in circulating leptin that occurs when the sympathetic nervous system is activated, such as during fasting and cold exposure. Furthermore, the rat does not provide an ideal model to study mechanisms of cellular leptin regulation in humans.


1989 ◽  
Vol 257 (3) ◽  
pp. C495-C503 ◽  
Author(s):  
F. Gorin ◽  
P. Ignacio ◽  
R. Gelinas ◽  
R. Carlsen

Physiological and molecular biological properties of free, orthotopic grafts of rat extensor digitorum longus (EDL) muscle were determined at 28-, 42-, and 76-days postgraft. cDNA probes for the rat fetal (B), liver (L), and muscle (M) isozymes of glycogen phosphorylase were used to assay isozyme mRNA levels. Regenerating muscle grafts did not express nonmuscle phosphorylase isozymes in vivo in contrast to primary rat skeletal muscle explants in vitro. Low levels of M-phosphorylase mRNA were present at all stages of regeneration in the grafts. However, M-phosphorylase mRNA levels and activity increased markedly and nonuniformly in a subset of functionally and morphologically stabilized regenerated muscle fibers between 42- and 76-days postgraft. Biochemical, physiological, and histochemical characterization of the stabilized grafts demonstrated that all fibers present were innervated and indicated that innervation might be a necessary, but not sufficient, condition for the increase in M-phosphorylase expression. The nonuniform appearance of phosphorylase activity suggests that a differential activity profile imposed on muscle fibers by their motoneuron may govern M-phosphorylase gene expression.


1997 ◽  
Vol 77 (02) ◽  
pp. 376-382 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryThe possible involvement of secreted platelet substances in agonist- induced [Ca2+]i increases was investigated by comparing these increases in aspirin-treated, fura-2-loaded normal platelets and platelets from patients with storage pool deficiencies (SPD). In the presence and absence of extracellular calcium, the [Ca2+]i response induced by 10 µM ADP, but not those induced by 0.1 unit/ml thrombin, 3.3 µM U46619, or 20 µM serotonin, was significantly greater in SPD platelets than in normal platelets, and was increased to the greatest extent in SPD patients with Hermansky-Pudlak syndrome (HPS), in whom the dense granule deficiencies are the most severe. Pre-incubation of SPD-HPS and normal platelets with 0.005-5 µM ADP produced a dose-dependent inhibition of the [Ca2+]i response induced by 10 µ M ADP, but did not alter the [Ca2+]i increases induced by thrombin or U46619. Within a limited range of ADP concentrations, the dose-inhibition curve of the [Ca2+]i response to 10 µM ADP was significantly shifted to the right in SPD-HPS platelets, indicating that pre-incubation with greater amounts of ADP were required to achieve the same extent of inhibition as in normal platelets. These results are consistent with a hypothesis that the smaller ADP-induced [Ca2+]i increases seen in normal platelets may result from prior interactions of dense granule ADP, released via leakage or low levels of activation, with membrane ADP receptors, causing receptor desensitization. Addition of apyrase to platelet-rich plasma prior to fura-2 loading increased the ADP-induced [Ca2+]i response in both normal and SPD-HPS platelets, suggesting that some release of ADP derived from both dense granule and non-granular sources occurs during in vitro fura-2 loading and platelet washing procedures. However, this [Ca2+]i response was also greater in SPD-HPS platelets when blood was collected with minimal manipulation directly into anticoagulant containing apyrase, raising the possibility that release of dense granule ADP resulting in receptor desensitization may also occur in vivo. Thus, in addition to enhancing platelet activation, dense granule ADP could also act to limit the ADP-mediated reactivity of platelets exposed in vivo to low levels of stimulation.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengwu Xiao ◽  
Wei Zhang ◽  
Meimian Hua ◽  
Huan Chen ◽  
Bin Yang ◽  
...  

Abstract Background The tripartite motif (TRIM) family proteins exhibit oncogenic roles in various cancers. The roles of TRIM27, a member of the TRIM super family, in renal cell carcinoma (RCC) remained unexplored. In the current study, we aimed to investigate the clinical impact and roles of TRIM27 in the development of RCC. Methods The mRNA levels of TRIM27 and Kaplan–Meier survival of RCC were analyzed from The Cancer Genome Atlas database. Real-time PCR and Western blotting were used to measure the mRNA and protein levels of TRIM27 both in vivo and in vitro. siRNA and TRIM27 were exogenously overexpressed in RCC cell lines to manipulate TRIM27 expression. Results We discovered that TRIM27 was elevated in RCC patients, and the expression of TRIM27 was closely correlated with poor prognosis. The loss of function and gain of function results illustrated that TRIM27 promotes cell proliferation and inhibits apoptosis in RCC cell lines. Furthermore, TRIM27 expression was positively associated with NF-κB expression in patients with RCC. Blocking the activity of NF-κB attenuated the TRIM27-mediated enhancement of proliferation and inhibition of apoptosis. TRIM27 directly interacted with Iκbα, an inhibitor of NF-κB, to promote its ubiquitination, and the inhibitory effects of TRIM27 on Iκbα led to NF-κB activation. Conclusions Our results suggest that TRIM27 exhibits an oncogenic role in RCC by regulating NF-κB signaling. TRIM27 serves as a specific prognostic indicator for RCC, and strategies targeting the suppression of TRIM27 function may shed light on future therapeutic approaches.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S7-S8
Author(s):  
Safina Gadeock ◽  
Cambrian Liu ◽  
Brent Polk

Abstract Tumor necrosis factor (TNF) is a highly expressed cytokine in inflammatory bowel disease (IBD). Although TNF can induce colonic epithelial dysfunction and apoptosis, recent studies suggest that TNF signalling promotes epithelial wound repair and stem cell function. Here we investigated the role of TNF receptor 1 (TNFR1) in mediating TNF’s effects on colonic epithelial stem cells, integral to mucosal healing in colitis. We demonstrate that Tnfr1-/- mice exhibit loss in Lgr5 expression (-52%, p<0.02; N=6) compared to wildtype (WT) controls. However, the opposite result was found in vitro, wherein murine Tnfr1-/- colonoids demonstrated a significant increase in Lgr5 expression (66%, p<0.007; N=6) compared to WT colonoids. Similarly, human colonoids treated with an anti-TNFR1 antibody also demonstrated an increase in Lgr5 expression, relative to IgG controls. To resolve the contradiction in the in vivo versus in vitro environment, we hypothesized that mesenchymal TNFR1 expression regulates the epithelial stem cell niche. To determine the relationships between these cell types, we co-cultured WT or Tnfr1-/- colonoids with WT or Tnfr1-/- colonic myofibroblasts (CMFs). We found that epithelial Lgr5 expression was significantly higher (by 52%, p<0.05; N=3) when co-cultured with WT compared to TNFR1-/- myofibroblasts. The loss of TNFR1 expression in vivo increases the number of αSMA+ mesenchymal cells by nearly 56% (N=6) but considerably reduces the pericryptal PDGFRα+ cells, suggesting modifications in mesenchymal populations that contribute to the epithelial stem cell niche. Functionally, primary Tnfr1-/--CMFs displayed PI3k (p<0.001; N=3) and MAPK (p<0.01; N=3)-dependent increases in migration, proliferation, and differentiation, but RNA profiling demonstrated by diminished levels of stem cell niche factors, Rspo3 (-80%, p<0.0001; N=6) and Wnt2b (-63%, p<0.008; N=6) compared to WT-CMFs. Supplementation with 50ng recombinant Rspo3 for 5 d to Lgr5-GFP organoids co-cultured with TNFR1-/--CMFs restored Lgr5 expression to wildtype levels. Therefore, TNFR1-mediated TNF signalling in mesenchymal cells promotes their ability to support an epithelial stem cell niche. These results should motivate future studies of the stem cell niche in the context of long-term treatment with anti-TNF therapies.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Kübra Taban ◽  
David Pauck ◽  
Mara Maue ◽  
Viktoria Marquardt ◽  
Hua Yu ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor in children and is frequently metastatic at diagnosis. Treatment with surgery, radiation and multi-agent chemotherapy may leave survivors of these brain tumors with long-term deficits as a consequence. One of the four consensus molecular subgroups of MB is the MYC-driven group 3 MB, which is the most malignant type and has a poor prognosis under current therapy. Thus, it is important to discover more effective targeted therapeutic approaches. We conducted a high-throughput drug screening to identify novel compounds showing efficiency in group 3 MB using both clinically established inhibitors (n=196) and clinically-applicable compounds (n=464). More than 20 compounds demonstrated a significantly higher anti-tumoral effect in MYChigh (n=7) compared to MYClow (n=4) MB cell models. Among these compounds, Navitoclax and Clofarabine showed the strongest effect in inducing cell cycle arrest and apoptosis in MYChigh MB models. Furthermore, we show that Navitoclax, an orally bioavailable and blood-brain barrier passing anti-cancer drug, inhibits specifically Bcl-xL proteins. In line, we found a significant correlation between BCL-xL and MYC mRNA levels in 763 primary MB patient samples (Data source: “R2 https://hgserver1.amc.nl”). In addition, Navitoclax and Clofarabine have been tested in cells obtained from MB patient-derived-xenografts, which confirmed their specific efficacy in MYChigh versus MYClow MB. In summary, our approach has identified promising new drugs that significantly reduce cell viability in MYChigh compared to MYClow MB cell models. Our findings point to novel therapeutic vulnerabilities for MB that need to be further validated in vitro and in vivo.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Renrong Wei ◽  
Cuiping Rong ◽  
Qingfeng Xie ◽  
Shouhai Wu ◽  
Yuchao Feng ◽  
...  

Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN)-striatum circuit, which is associated with glial activation and consequent chronic neuroinflammation. Optimized Yinxieling Formula (OYF) is a Chinese medicine that exerts therapeutical effect and antiinflammation property on psoriasis. Our previous study has proven that pretreatment with OYF could regulate glia-mediated inflammation in an acute mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Given that PD is a chronic degeneration disorder, this study applied another PD animal model induced by striatal injection of 6-hydroxydopamine (6-OHDA) to mimic the progressive damage of the SN-striatum dopamine system in rats. The OYF was administrated in the manner of pretreatment plus treatment. The effects of the OYF on motor behaviors were assessed with the apomorphine-induced rotation test and adjusting steps test. To confirm the effect of OYF on dopaminergic neurons and glia activation in this model, we analyzed the expression of tyrosine hydroxylase (TH) and glia markers, ionized calcium-binding adapter molecule 1 (Iba-1), and glial fibrillary acidic protein (GFAP) in the SN region of the rat PD model. Inflammation-associated factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were further evaluated in this model and in interferon-γ- (INF-γ-) induced murine macrophages RAW264.7 cells. The results from the in vivo study showed that OYF reversed the motor behavioral dysfunction in 6-OHDA-induced PD rats, upregulated the TH expression, decreased the immunoreactivity of Iba-1 and GFAP, and downregulated the mRNA levels of TNF-α and COX-2. The OYF also trended to decrease the mRNA levels of IL-1β and iNOS in vivo. The results from the in vitro study showed that OYF significantly decreased the mRNA levels of TNF-α, IL-1β, IL-6, iNOS, and COX-2. Therefore, this study suggests that OYF exerts antiinflammatory effects, which might be related to the protection of dopaminergic neurons in 6-OHDA-induced chronic neurotoxicity.


Endocrinology ◽  
2004 ◽  
Vol 145 (12) ◽  
pp. 5525-5531 ◽  
Author(s):  
Gary M. Leong ◽  
Sofia Moverare ◽  
Jesena Brce ◽  
Nathan Doyle ◽  
Klara Sjögren ◽  
...  

Abstract Suppressors of cytokine signaling (SOCS) are important negative regulators of cytokine action. We recently reported that estrogen stimulates SOCS-2 expression and inhibits GH signaling in kidney cells. The effects of estrogen on SOCS expression in other tissues are unclear. The aim of this study was to investigate in vivo and in vitro whether estrogen affected SOCS expression in the liver, a major target organ of GH. The in vivo hepatic effects of estrogen on ovariectomized mice lacking estrogen receptor (ER)-α, ERβ, or both and their wild-type littermates were examined by DNA microarray analysis. In vitro, the effects of estrogen on SOCS expression in human hepatoma cells were examined by reverse transcription quantitative PCR. Long-term (3 wk) estrogen treatment induced a 2- to 3-fold increase in hepatic expression of SOCS-2 and -3 in wild-type and ERβ knockout mice but not in those lacking ERα or both ER subtypes. Short-term treatment (at 24 h) increased the mRNA level of SOCS-3 but not SOCS-2. In cultured hepatoma cells, estrogen increased SOCS-2 and -3 mRNA levels by 2-fold in a time- and dose-dependent manner (P < 0.05). Estrogen induced murine SOCS-3 promoter activity by 2-fold (P < 0.05) in constructs containing a region between nucleotides −1862 and −855. Moreover, estrogen and GH had additive effects on the SOCS-3 promoter activity. In summary, estrogen, via ERα, up-regulated hepatic expression of SOCS-2 and -3, probably through transcriptional activation. This indicates a novel mechanism of estrogen regulation of cytokine action.


Sign in / Sign up

Export Citation Format

Share Document