scholarly journals Proopiomelanocortin, a polypeptide precursor with multiple functions: from physiology to pathological conditions

2003 ◽  
Vol 149 (2) ◽  
pp. 79-90 ◽  
Author(s):  
ML Raffin-Sanson ◽  
Y de Keyzer ◽  
X Bertagna

Proopiomelanocortin (POMC) is the polypeptide precursor of ACTH. First discovered in anterior pituitary corticotroph cells, it has more recently been revealed to have many other physiological aspects. The fine molecular mechanisms of ACTH biosynthesis show that ACTH is but one piece of a puzzle which contains many other peptides. Present in various tIssues, among which are pituitary, hypothalamus, central nervous system and skin, POMC undergoes extensive post-translational processing. This processing is tIssue-specific and generates, depending on the case, various sets of peptides involved in completely diverse biological functions. POMC expressed in corticotroph cells of the pituitary is necessary for adrenal function. Recent developments have shown that POMC-expressing neurons in the brain play a major role in the control of pain and energy homeostasis. Local production of POMC-derived peptides in skin may influence melanogenesis. A still unknown function in the placenta is likely.POMC has become a paradigmatic polypeptide precursor model illustrating the variable roles of a single gene and its various products in different localities.

2008 ◽  
pp. S101-S110
Author(s):  
A Chvátal ◽  
M Anděrová ◽  
H Neprašová ◽  
I Prajerová ◽  
J Benešová ◽  
...  

The pathological potential of glial cells was recognized already by Rudolf Virchow, Santiago Ramon y Cajal and Pio Del Rio-Ortega. Many functions and roles performed by astroglia in the healthy brain determine their involvement in brain diseases; as indeed any kind of brain insult does affect astrocytes, and their performance in pathological conditions, to a very large extent, determines the survival of the brain parenchyma, the degree of damage and neurological defect. Astrocytes being in general responsible for overall brain homeostasis are involved in virtually every form of brain pathology. Here we provide an overview of recent developments in identifying the role and mechanisms of the pathological potential of astroglia.


2007 ◽  
Vol 22 (5) ◽  
pp. 1-9 ◽  
Author(s):  
Danny Liang ◽  
Sergei Bhatta ◽  
Volodymyr Gerzanich ◽  
J. Marc Simard

✓Cerebral edema is caused by a variety of pathological conditions that affect the brain. It is associated with two separate pathophysiological processes with distinct molecular and physiological antecedents: those related to cytotoxic (cellular) edema of neurons and astrocytes, and those related to transcapillary flux of Na+ and other ions, water, and serum macromolecules. In this review, the authors focus exclusively on the first of these two processes. Cytotoxic edema results from unchecked or uncompensated influx of cations, mainly Na+, through cation channels. The authors review the different cation channels that have been implicated in the formation of cytotoxic edema of astrocytes and neurons in different pathological states. A better understanding of these molecular mechanisms holds the promise of improved treatments of cerebral edema and of the secondary injury produced by this pathological process.


Author(s):  
Adriana-Natalia Murgoci ◽  
Khalil Mallah ◽  
Soulaimane Aboulouard ◽  
Christophe Lefebvre ◽  
Milan Cizek ◽  
...  

Using a combination of pan proteomic platform associated with systemic biology analyses, we demonstrate that neonatal microglial cells derived from cortex and spinal cord expressed different phenotypes upon the physiological or pathological conditions. They also highlight great variability in protein production on both cellular and exosome levels. Bioinformatics data indicate for the cortical microglia anti-inflammatory and neurogenesis/tumorigenesis characteristics, while for the spinal cord microglia involvement in the inflammatory response. We confirmed these results by performing functional testing including neurite outgrowth assays in DRGs cell line, and glioma proliferation analysis in 3D spheroid cultures. Results from these in vitro assays indicate that the microglia located at different CNS areas reveal differential biological functions. While both microglia sources enhanced growth of DRGs axons, only the spinal microglia significantly attenuated glioma proliferation. Overall these findings are pointing to the fact that the origin of neonatal microglia affects the physio-pathological function, which may address the prevalence of the glioma in the brain in comparison with the spinal cord in adult.


2021 ◽  
Vol 4 (1) ◽  
pp. 23-41
Author(s):  
Alexandra-Elena Dobranici ◽  
Sorina Dinescu ◽  
Marieta Costache

Specialised cells of the brain are generated from a population of multipotent stem cells found in the forming embryo and adult brain after birth, called neural stem cells. They reside in specific niches, usually in a quiescent, non-proliferating state that maintains their reservoir. Neural stem cells are kept inactive by various cues such as direct cell-cell contacts with neighbouring cells or by soluble molecules that trigger intracellular responses. They are activated in response to injuries, physical exercise, or hypoxia condition, through stimulation of signaling pathways that are usually correlated with increased proliferation and survival. Moreover, mature neurons play essential role in regulating the balance between active and quiescent state by realising inhibitory or activating neurotransmitters. Understanding molecular mechanisms underlying neuronal differentiation is of great importance in elucidating pathological conditions of the brain and treating neurodegenerative disorders that until now have no efficient therapies.


2016 ◽  
Vol 120 (6) ◽  
pp. 664-673 ◽  
Author(s):  
Anna Vainshtein ◽  
David A. Hood

The merits of exercise on muscle health and well-being are numerous and well documented. However, the mechanisms underlying the robust adaptations induced by exercise, particularly on mitochondria, are less clear and much sought after. Recently, an evolutionary conserved cellular recycling mechanism known as autophagy has been implicated in the adaptations to acute and chronic exercise. A basal level of autophagy is constantly ongoing in cells and tissues, ensuring cellular clearance and energy homeostasis. This pathway can be further induced, as a survival mechanism, by cellular perturbations, such as energetic imbalance and oxidative stress. During exercise, a biphasic autophagy response is mobilized, leading to both an acute induction and a long-term potentiation of the process. Posttranslational modifications arising from upstream signaling cascades induce an acute autophagic response during a single bout of exercise by mobilizing core autophagy machinery. A transcriptional program involving the regulators Forkhead box O, transcription factor EB, p53, and peroxisome proliferator coactivator-1α is also induced to fuel sustained increases in autophagic capacity. Autophagy has also been documented to mediate chronic exercise-induced metabolic benefits, and animal models in which autophagy is perturbed do not adapt to exercise to the same extent. In this review, we discuss recent developments in the field of autophagy and exercise. We specifically highlight the molecular mechanisms activated during acute exercise that lead to a prolonged adaptive response.


2021 ◽  
Vol 8 (1) ◽  
pp. 17-26
Author(s):  
Elisabeta Malinici ◽  
Anca Sirbu ◽  
Miruna Popa ◽  
Simona Fica

Over the past years, bone and adipose tissue have gained interest from researchers in the light of their secretory profiles, being able to produce active molecules, with the final effect of regulating energy homeostasis. Both adipocytes and osteoblasts originate in the pluripotent mesenchymal stem cell and this common origin has been proposed as the core of the fat-bone relationship. The central nervous system might be the third player in this association, capable of integrating signals. Numerous adipose tissue secreted factors that influence energy homeostasis and bone have been described: leptin, adiponectin, lipocalin 2, and inflammatory cytokines (e.g. IL-1, IL-6 and TNF-α). Similarly, osteocalcin, the most abundant bone protein, has been shown to elicit numerous central and peripheral endocrine functions. In this paper, we provide a review of the current literature regarding the bone-adipose tissue-central nervous system axis and a brief description of the several underlying molecular mechanisms.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 152
Author(s):  
Camille Meslin ◽  
Françoise Bozzolan ◽  
Virginie Braman ◽  
Solenne Chardonnet ◽  
Cédric Pionneau ◽  
...  

Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids such as clothianidin. The residual accumulation of low concentrations of these insecticides can have positive effects on target pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction and olfactory synaptic transmission is cholinergic, neonicotinoid residues could indeed modify chemical communication. We recently showed that treatments with low doses of clothianidin could induce hormetic effects on behavioral and neuronal sex pheromone responses in the male moth, Agrotis ipsilon. In this study, we used high-throughput RNAseq and proteomic analyses from brains of A. ipsilon males that were intoxicated with a low dose of clothianidin to investigate the molecular mechanisms leading to the observed hormetic effect. Our results showed that clothianidin induced significant changes in transcript levels and protein quantity in the brain of treated moths: 1229 genes and 49 proteins were differentially expressed upon clothianidin exposure. In particular, our analyses highlighted a regulation in numerous enzymes as a possible detoxification response to the insecticide and also numerous changes in neuronal processes, which could act as a form of acclimatization to the insecticide-contaminated environment, both leading to enhanced neuronal and behavioral responses to sex pheromone.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 142
Author(s):  
Mariella Cuomo ◽  
Luca Borrelli ◽  
Rosa Della Monica ◽  
Lorena Coretti ◽  
Giulia De Riso ◽  
...  

The bidirectional microbiota–gut–brain axis has raised increasing interest over the past years in the context of health and disease, but there is a lack of information on molecular mechanisms underlying this connection. We hypothesized that change in microbiota composition may affect brain epigenetics leading to long-lasting effects on specific brain gene regulation. To test this hypothesis, we used Zebrafish (Danio Rerio) as a model system. As previously shown, treatment with high doses of probiotics can modulate behavior in Zebrafish, causing significant changes in the expression of some brain-relevant genes, such as BDNF and Tph1A. Using an ultra-deep targeted analysis, we investigated the methylation state of the BDNF and Tph1A promoter region in the brain and gut of probiotic-treated and untreated Zebrafishes. Thanks to the high resolution power of our analysis, we evaluated cell-to-cell methylation differences. At this resolution level, we found slight DNA methylation changes in probiotic-treated samples, likely related to a subgroup of brain and gut cells, and that specific DNA methylation signatures significantly correlated with specific behavioral scores.


Sign in / Sign up

Export Citation Format

Share Document