scholarly journals COVID-19 and androgen-targeted therapy for prostate cancer patients

2020 ◽  
Vol 27 (9) ◽  
pp. R281-R292 ◽  
Author(s):  
Neil A Bhowmick ◽  
Jillian Oft ◽  
Tanya Dorff ◽  
Sumanta Pal ◽  
Neeraj Agarwal ◽  
...  

The current pandemic (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health challenge with active development of antiviral drugs and vaccines seeking to reduce its significant disease burden. Early reports have confirmed that transmembrane serine protease 2 (TMPRSS2) and angiotensin converting enzyme 2 (ACE2) are critical targets of SARS-CoV-2 that facilitate viral entry into host cells. TMPRSS2 and ACE2 are expressed in multiple human tissues beyond the lung including the testes where predisposition to SARS-CoV-2 infection may exist. TMPRSS2 is an androgen-responsive gene and its fusion represents one of the most frequent alterations in prostate cancer. Androgen suppression by androgen deprivation therapy and androgen receptor signaling inhibitors form the foundation of prostate cancer treatment. In this review, we highlight the growing evidence in support of androgen regulation of TMPRSS2 and ACE2 and the potential clinical implications of using androgen suppression to downregulate TMPRSS2 to target SARS-CoV-2. We also discuss the future directions and controversies that need to be addressed in order to establish the viability of targeting TMPRSS2 and/or ACE2 through androgen signaling regulation for COVID-19 treatment, particularly its relevance in the context of prostate cancer management.

2020 ◽  
Vol 11 ◽  
Author(s):  
Dimitris G. Placantonakis ◽  
Maria Aguero-Rosenfeld ◽  
Abdallah Flaifel ◽  
John Colavito ◽  
Kenneth Inglima ◽  
...  

Neurologic manifestations of the novel coronavirus SARS-CoV-2 infection have received wide attention, but the mechanisms remain uncertain. Here, we describe computational data from public domain RNA-seq datasets and cerebrospinal fluid data from adult patients with severe COVID-19 pneumonia that suggest that SARS-CoV-2 infection of the central nervous system is unlikely. We found that the mRNAs encoding the ACE2 receptor and the TMPRSS2 transmembrane serine protease, both of which are required for viral entry into host cells, are minimally expressed in the major cell types of the brain. In addition, CSF samples from 13 adult encephalopathic COVID-19 patients diagnosed with the viral infection via nasopharyngeal swab RT-PCR did not show evidence for the virus. This particular finding is robust for two reasons. First, the RT-PCR diagnostic was validated for CSF studies using stringent criteria; and second, 61% of these patients had CSF testing within 1 week of a positive nasopharyngeal diagnostic test. We propose that neurologic sequelae of COVID-19 are not due to SARS-CoV-2 meningoencephalitis and that other etiologies are more likely mechanisms.


Author(s):  
Mojtaba Bakhtiari ◽  
Kamyar Asadipooya

Abstract: A new coronavirus pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2], has been on the rise. This virus is fatal for broad groups of populations, including elderly, men, and patients with comorbidities among which obesity is a possible risk factor. The pathophysiologic connections between obesity/metainflammation and COVID-19 may be directly related to increasing soluble ACE2 (angiotensin-converting enzyme 2] levels which potentiates the viral entrance into the host cells, or indirectly related to dysregulation of immune system, microvascular injury and hypercoagulability. The SARS-CoV-2 S-glycoprotein interacts mainly with ACE2 or possibly DDP4 receptors to enter into the host cells. The host proteases, especially TMPRSS2 (transmembrane protease serine 2], support the fusion process and virus entry. While membranous ACE2 is considered a port of entry to the cell for SARS-CoV-2, it seems that soluble ACE2 retains its virus binding capability and enhances its entry into the cells. Interestingly, ACE2 on cell membrane may have protective roles by diminishing cytokine storm-related injuries to the organs. Applying medications that can reduce soluble ACE2 levels, antagonizing TMPRSS2 or blocking DDP4 can improve the outcomes of COVID-19. Metformin and statins through immunomodulatory activities, Orlistat by reducing viral replication, and thiazolidinediones by upregulating ACE2 expression have potential beneficial effects against COVID-19. However, the combination of dipeptidyl peptidase-4 (DDP4] inhibitors and spironolactone/eplerenone seems to be more effective by reducing soluble ACE2 level, antagonizing TMPRSS2, maintaining ACE2 on cell membrane and reducing risk of viral entry into the cells.


2020 ◽  
Author(s):  
Lamiaa El-Shennawy ◽  
Andrew D. Hoffmann ◽  
Nurmaa K. Dashzeveg ◽  
Paul J. Mehl ◽  
Zihao Yu ◽  
...  

AbstractThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19) with innate and adaptive immune response triggered in such patients by viral antigens. Both convalescent plasma and engineered high affinity human monoclonal antibodies have shown therapeutic potential to treat COVID-19. Whether additional antiviral soluble factors exist in peripheral blood remain understudied. Herein, we detected circulating exosomes that express the SARS-CoV-2 viral entry receptor angiotensin-converting enzyme 2 (ACE2) in plasma of both healthy donors and convalescent COVID-19 patients. We demonstrated that exosomal ACE2 competes with cellular ACE2 for neutralization of SARS-CoV-2 infection. ACE2-expressing (ACE2+) exosomes blocked the binding of the viral spike (S) protein RBD to ACE2+ cells in a dose dependent manner, which was 400- to 700-fold more potent than that of vesicle-free recombinant human ACE2 extracellular domain protein (rhACE2). As a consequence, exosomal ACE2 prevented SARS-CoV-2 pseudotype virus tethering and infection of human host cells at a 50-150 fold higher efficacy than rhACE2. A similar antiviral activity of exosomal ACE2 was further demonstrated to block wild-type live SARS-CoV-2 infection. Of note, depletion of ACE2+ exosomes from COVID-19 patient plasma impaired the ability to block SARS-CoV-2 RBD binding to host cells. Our data demonstrate that ACE2+ exosomes can serve as a decoy therapeutic and a possible innate antiviral mechanism to block SARS-CoV-2 infection.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Tümay Capraz ◽  
Nikolaus Ferdinand Kienzl ◽  
Elisabeth Laurent ◽  
Jan W Perthold ◽  
Esther Föderl-Höbenreich ◽  
...  

Infection and viral entry of SARS-CoV-2 crucially depends on the binding of its Spike protein to angiotensin converting enzyme 2 (ACE2) presented on host cells. Glycosylation of both proteins is critical for this interaction. Recombinant soluble human ACE2 can neutralize SARS-CoV-2 and is currently undergoing clinical tests for the treatment of COVID-19. We used 3D structural models and molecular dynamics simulations to define the ACE2 N-glycans that critically influence Spike-ACE2 complex formation. Engineering of ACE2 N-glycosylation by site-directed mutagenesis or glycosidase treatment resulted in enhanced binding affinities and improved virus neutralization without notable deleterious effects on the structural stability and catalytic activity of the protein. Importantly, simultaneous removal of all accessible N-glycans from recombinant soluble human ACE2 yields a superior SARS-CoV-2 decoy receptor with promise as effective treatment for COVID-19 patients.


Author(s):  
Lourdes Ortiz-Fernández ◽  
Amr H Sawalha

AbstractThe entry of SARS-CoV-2 into host cells is dependent upon angiotensin-converting enzyme 2 (ACE2), which serves as a functional attachment receptor for the viral spike glycoprotein, and the serine protease TMPRSS2 which allows fusion of the viral and host cell membranes. We devised a quantitative measure to estimate genetic determinants of ACE2 and TMPRSS2 expression and applied this measure to >2,500 individuals. Our data show significant variability in genetic determinants of ACE2 and TMPRSS2 expression among individuals and between populations, and demonstrate a genetic predisposition for lower expression levels of both key viral entry genes in African populations. These data suggest that genetic factors might lead to lower susceptibility for SARS-CoV-2 infection in African populations and that host genetics might help explain inter-individual variability in disease susceptibility and severity of COVID-19.


2021 ◽  
Author(s):  
Leili Zhang ◽  
Tien Huynh ◽  
Binquan Luan

The highly infectious SARS-CoV-2 variant B.1.617 with double mutations E484Q and L452R in the receptor binding domain (RBD) of SARS-CoV-2's spike protein is worrisome. Demonstrated in crystal structures, the residues 452 and 484 in RBD are not in direct contact with interfacial residues in the angiotensin converting enzyme 2 (ACE2). This suggests that albeit there are some possibly nonlocal effects, the E484Q and L452R mutations might not significantly affect RBD's binding with ACE2, which is an important step for viral entry into host cells. Thus, without the known molecular mechanism, these two successful mutations (from the point of view of SARS-CoV-2) can be hypothesized to evade human antibodies. Using in silico all-atom molecular dynamics (MD) simulation as well as deep learning (DL) approaches, here we show that these two mutations significantly reduce the binding affinity between RBD and the antibody LY-CoV555 (also named as Bamlanivimab) that was proven to be efficacious for neutralizing the wide-type SARS-CoV-2. With the revealed molecular mechanism on how L452R and E484K evade LY-CoV555, we expect that more specific therapeutic antibodies can be accordingly designed and/or a precision mixing of antibodies can be achieved in a cocktail treatment for patients infected with the variant B.1.617.


Author(s):  
Michael Schoof ◽  
Bryan Faust ◽  
Reuben A. Saunders ◽  
Smriti Sangwan ◽  
Veronica Rezelj ◽  
...  

ABSTRACTWithout an effective prophylactic solution, infections from SARS-CoV-2 continue to rise worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). Disruption of this interaction confers potent neutralization of viral entry, providing an avenue for vaccine design and for therapeutic antibodies. Here, we develop single-domain antibodies (nanobodies) that potently disrupt the interaction between the SARS-CoV-2 Spike and ACE2. By screening a yeast surface-displayed library of synthetic nanobody sequences, we identified a panel of nanobodies that bind to multiple epitopes on Spike and block ACE2 interaction via two distinct mechanisms. Cryogenic electron microscopy (cryo-EM) revealed that one exceptionally stable nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains (RBDs) locked into their inaccessible down-state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for SARS-CoV-2 Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains stability and function after aerosolization, lyophilization, and heat treatment. These properties may enable aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia, promising to yield a widely deployable, patient-friendly prophylactic and/or early infection therapeutic agent to stem the worst pandemic in a century.


2020 ◽  
Vol 73 (12) ◽  
pp. 773-776 ◽  
Author(s):  
Michelle Thunders ◽  
Brett Delahunt

Transmembrane serine protease 2 is encoded by the TMPRSS2 gene. The gene is widely conserved and has two isoforms, both being autocatalytically activated from the inactive zymogen form. A fusion gene between the TMPRSS2 gene and ERG (erythroblast-specific-related gene), an oncogenic transcription factor, is the most common chromosomal aberration detected in prostate cancer, responsible for driving carcinogenesis. The other key role of TMPRSS2 is in priming the viral spike protein which facilitates viral entry essential for viral infectivity. The protease activates a diverse range of viruses. Both SARS-CoV and SARS-CoV-2 (COVID-19) use angiotensin-converting enzyme 2 (ACE2) and TMPRSS2 to facilitate entry to cells, but with SARS-CoV-2 human-to-human transmission is much higher than SARS-CoV. As TMPRSS2 is expressed outside of the lung, and can therefore contribute to extrapulmonary spread of viruses, it warrants further exploration as a potential target for limiting viral spread and infectivity.


2021 ◽  
Vol 28 ◽  
Author(s):  
Hao Lin ◽  
Srinivasulu Cherukupalli ◽  
Da Feng ◽  
Shenghua Gao ◽  
Dongwei Kang ◽  
...  

: COVID-19 is an infectious disease caused by SARS-CoV-2. The life cycle of SARS-CoV-2 includes the entry into the target cells, replicase translation, replicating and transcribing genomes, translating structural proteins, assembling and releasing new virions. Entering host cells is a crucial stage in the early life cycle of the virus, and blocking this stage can effectively prevent virus infection. SARS enters the target cells mediated by the interaction between the viral S protein and the target cell surface receptor angiotensin-converting enzyme 2 (ACE2), as well as the cleavage effect of type-II transmembrane serine protease (TMPRSS2) on the S protein. Therefore, the ACE2 receptor and TMPRSS2 are important targets for SARS-CoV-2 entry inhibitors. Herein, we provide a concise report/information on drugs with potential therapeutic value targeting virus-ACE2 or virus-TMPRSS2 interactions, to provide a reference for the design and discovery of potential entry inhibitors against SARS-CoV-2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Santosh Kumar Behera ◽  
Nazmina Vhora ◽  
Darshan Contractor ◽  
Amit Shard ◽  
Dinesh Kumar ◽  
...  

AbstractOutcomes of various clinical studies for the coronavirus disease 2019 (COVID-19) treatment indicated that the drug acts via inhibition of multiple pathways (targets) is likely to be more successful and promising. Keeping this hypothesis intact, the present study describes for the first-time, Grazoprevir, an FDA approved anti-viral drug primarily approved for Hepatitis C Virus (HCV), mediated multiple pathway control via synergistic inhibition of viral entry targeting host cell Angiotensin-Converting Enzyme 2 (ACE-2)/transmembrane serine protease 2 (TMPRSS2) and viral replication targeting RNA-dependent RNA polymerase (RdRP). Molecular modeling followed by in-depth structural analysis clearly demonstrated that Grazoprevir interacts with the key residues of these targets. Futher, Molecular Dynamics (MD) simulations showed stability and burial of key residues after the complex formation. Finally, Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analysis identified the governing force of drug-receptor interactions and stability. Thus, we believe that Grazoprevir could be an effective therapeutics for the treatment of the COVID-19 pandemic with a promise of unlikely drug resistance owing to multiple inhibitions of eukaryotic and viral proteins, thus warrants further clinical studies.


Sign in / Sign up

Export Citation Format

Share Document