scholarly journals Circulating ACE2-expressing Exosomes Block SARS-CoV-2 Infection as an Innate Antiviral Mechanism

2020 ◽  
Author(s):  
Lamiaa El-Shennawy ◽  
Andrew D. Hoffmann ◽  
Nurmaa K. Dashzeveg ◽  
Paul J. Mehl ◽  
Zihao Yu ◽  
...  

AbstractThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19) with innate and adaptive immune response triggered in such patients by viral antigens. Both convalescent plasma and engineered high affinity human monoclonal antibodies have shown therapeutic potential to treat COVID-19. Whether additional antiviral soluble factors exist in peripheral blood remain understudied. Herein, we detected circulating exosomes that express the SARS-CoV-2 viral entry receptor angiotensin-converting enzyme 2 (ACE2) in plasma of both healthy donors and convalescent COVID-19 patients. We demonstrated that exosomal ACE2 competes with cellular ACE2 for neutralization of SARS-CoV-2 infection. ACE2-expressing (ACE2+) exosomes blocked the binding of the viral spike (S) protein RBD to ACE2+ cells in a dose dependent manner, which was 400- to 700-fold more potent than that of vesicle-free recombinant human ACE2 extracellular domain protein (rhACE2). As a consequence, exosomal ACE2 prevented SARS-CoV-2 pseudotype virus tethering and infection of human host cells at a 50-150 fold higher efficacy than rhACE2. A similar antiviral activity of exosomal ACE2 was further demonstrated to block wild-type live SARS-CoV-2 infection. Of note, depletion of ACE2+ exosomes from COVID-19 patient plasma impaired the ability to block SARS-CoV-2 RBD binding to host cells. Our data demonstrate that ACE2+ exosomes can serve as a decoy therapeutic and a possible innate antiviral mechanism to block SARS-CoV-2 infection.

2021 ◽  
Author(s):  
Lamiaa El-Shennawy ◽  
Andrew Hoffmann ◽  
Nurmaa Dashzeveg ◽  
Paul Mehl ◽  
Zihao Yu ◽  
...  

Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19) with innate and adaptive immune response triggered in such patients by viral antigens. Both convalescent plasma and engineered high affinity human monoclonal antibodies have shown therapeutic potential to treat COVID-19. Whether additional antiviral soluble factors exist in peripheral blood remain understudied. Herein, we detected circulating exosomes that express the SARS-CoV-2 viral entry receptor angiotensin-converting enzyme 2 (ACE2) in plasma of both healthy donors and convalescent COVID-19 patients. We demonstrated that exosomal ACE2 competes with cellular ACE2 for neutralization of SARS-CoV-2 infection. ACE2-expressing (ACE2+) exosomes, but not the ACE2-negative controls, blocked the binding of the viral spike (S) protein RBD to ACE2+ cells in a dose dependent manner, which was 400- to 700-fold more potent than that of vesicle-free recombinant human ACE2 extracellular domain protein (rhACE2). As a consequence, exosomal ACE2 prevented SARS-CoV-2 pseudotype virus tethering and infection of human host cells at a 50–150 fold higher efficacy than rhACE2. A similar antiviral activity of exosomal ACE2 was further demonstrated to block wild-type live SARS-CoV-2 infection. Of note, depletion of ACE2+ exosomes from COVID-19 patient plasma impaired the ability to block SARS-CoV-2 RBD binding to host cells. Furthermore, a dramatic increase in plasma ACE2+ exosome levels were detected in patients with severe COVID-19 pathogenesis. Our data demonstrate that ACE2+ exosomes can serve as a decoy therapeutic and a possible innate antiviral mechanism to block SARS-CoV-2 infection.


2020 ◽  
Author(s):  
Cheng Wang ◽  
Shaobo Wang ◽  
Yin Chen ◽  
Jianqi Zhao ◽  
Songling Han ◽  
...  

ABSTRACTThe ongoing COVID-19 epidemic worldwide necessitates the development of novel effective agents against SARS-CoV-2. ACE2 is the main receptor of SARS-CoV-2 S1 protein and mediates viral entry into host cells. Herein, the membrane nanoparticles prepared from ACE2-rich cells are discovered with potent capacity to block SARS-CoV-2 infection. The membrane of human embryonic kidney-239T cell highly expressing ACE2 is screened to prepare nanoparticles. The nanomaterial termed HEK-293T-hACE2 NPs contains 265.1 ng mg−1 of ACE2 on the surface and acts as a bait to trap SARS-CoV-2 S1 in a dose-dependent manner, resulting in reduced recruitment of the viral ligand to host cells. Interestingly, SARS-CoV-2 S1 can translocate to the cytoplasm and affect the cell metabolism, which is also inhibited by HEK-293T-hACE2 NPs. Further studies reveal that HEK-293T-hACE2 NPs can efficiently suppress SARS-CoV-2 S pseudovirions entry into human proximal tubular cells and block viral infection with a low half maximal inhibitory concentration. Additionally, this biocompatible membrane nanomaterial is sufficient to block the adherence of SARS-CoV-2 D614G-S1 mutant to sensitive cells. Our study demonstrates a easy-to-acheive memrbane nano-antagonist for curbing SARS-CoV-2, which enriches the existing antiviral arsenal and provides new possibilities to treat COVID-19. Graphical Table of Contents


2021 ◽  
Vol 11 ◽  
Author(s):  
Taizhen Liang ◽  
Jiayin Qiu ◽  
Xiaoge Niu ◽  
Qinhai Ma ◽  
Chenliang Zhou ◽  
...  

The global spread of the novel coronavirus SARS-CoV-2 urgently requires discovery of effective therapeutics for the treatment of COVID-19. The spike (S) protein of SARS-CoV-2 plays a key role in receptor recognition, virus-cell membrane fusion and virus entry. Our previous studies have reported that 3-hydroxyphthalic anhydride-modified chicken ovalbumin (HP-OVA) serves as a viral entry inhibitor to prevent several kinds of virus infection. Here, our results reveal that HP-OVA can effectively inhibit SARS-CoV-2 replication and S protein-mediated cell-cell fusion in a dose-dependent manner without obvious cytopathic effects. Further analysis suggests that HP-OVA can bind to both the S protein of SARS-CoV-2 and host angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV-2, and disrupt the S protein-ACE2 interaction, thereby exhibiting inhibitory activity against SARS-CoV-2 infection. In summary, our findings suggest that HP-OVA can serve as a potential therapeutic agent for the treatment of deadly COVID-19.


Author(s):  
Cheng Wang ◽  
Shaobo Wang ◽  
Daixi Li ◽  
Xia Zhao ◽  
Songling Han ◽  
...  

AbstractThe burgeoning epidemic caused by novel coronavirus 2019 (2019-nCoV) is currently a global concern. Angiotensin-converting enzyme-2 (ACE2) is a receptor of 2019-nCoV spike 1 protein (S1) and mediates viral entry into host cells. Despite the abundance of ACE2 in small intestine, few digestive symptoms are observed in patients infected by 2019-nCoV. Herein, we investigated the interactions between ACE2 and human defensins (HDs) specifically secreted by intestinal Paneth cells. The lectin-like HD5, rather than HD6, bound ACE2 with a high affinity of 39.3 nM and weakened the subsequent recruitment of 2019-nCoV S1. The cloak of HD5 on the ligand-binding domain of ACE2 was confirmed by molecular dynamic simulation. A remarkable dose-dependent preventive effect of HD5 on 2019-nCoV S1 binding to intestinal epithelial cells was further evidenced by in vitro experiments. Our findings unmasked the innate defense function of lectin-like intestinal defensin against 2019-nCoV, which may provide new insights into the prevention and treatment of 2019-nCoV infection.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Chandrakala Aluganti Narasimhulu ◽  
Kathryn Young Burge ◽  
Yu Yuan ◽  
Sampath Parthasarathy

Background: Alpha keto acids are unstable and decompose rapidly. In this study, we tested the ability of alpha keto acids to reduce peroxides and inhibit oxidation of lipoproteins. Methods: Keto salicylic acid (KSA) and Keto Octanoicacid (KoA) were synthesized and their ability to reduce hydrogen peroxides as well as lipid peroxides (LOOH) was measured using 13-hydroperoxyoctadecadienoic acid (13-HPODE). Lipoproteins (LDL and HDL) were isolated from human plasma and oxidation of liporproteins was performed using copper and MPO in the presence or absence of the keto compounds. RAW 264.7 cells and HUVECS were incubated with LPS and mm-LDL respectively either in the presence or absence of the keto compounds. RNA was isolated from treated cells and real time PCR was performed to analyze IL-1α, IL-6, MCP-1 and VCAM1 gene expressions. Reactive oxygen species were evaluated using DCF fluorescence in presence and absence of the keto compounds. Results: KSA reduced both H2O2 and 13-HPODE whereas KoA is able to reduce the former but not the latter. Both compounds inhibited the lipoprotein oxidation in a dose dependent manner and were able to reduce ROS production by H2O2. KSA is able to inhibit both LPS as well as mm-LDL induced inflammation. However, KoA showed a dual effect as it induced inflammatory markers in the presence of LPS, but inhibited the mm-LDL-induced inflammatory gene expressions. Conclusion: The results of our studies suggest that these keto compounds a) inhibit both enzymatic and non enzymatic oxidation of lipoproteins; b) reduce peroxides and ROS and c) have inhibitory and inducing effect on inflammatory cytokine/gene production in presence of mm-LDL and LPS respectively. Based on these results, we predict that these keto compounds could have therapeutic potential in reducing CVD/atherosclerosis-associated inflammation.


Author(s):  
Mojtaba Bakhtiari ◽  
Kamyar Asadipooya

Abstract: A new coronavirus pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2], has been on the rise. This virus is fatal for broad groups of populations, including elderly, men, and patients with comorbidities among which obesity is a possible risk factor. The pathophysiologic connections between obesity/metainflammation and COVID-19 may be directly related to increasing soluble ACE2 (angiotensin-converting enzyme 2] levels which potentiates the viral entrance into the host cells, or indirectly related to dysregulation of immune system, microvascular injury and hypercoagulability. The SARS-CoV-2 S-glycoprotein interacts mainly with ACE2 or possibly DDP4 receptors to enter into the host cells. The host proteases, especially TMPRSS2 (transmembrane protease serine 2], support the fusion process and virus entry. While membranous ACE2 is considered a port of entry to the cell for SARS-CoV-2, it seems that soluble ACE2 retains its virus binding capability and enhances its entry into the cells. Interestingly, ACE2 on cell membrane may have protective roles by diminishing cytokine storm-related injuries to the organs. Applying medications that can reduce soluble ACE2 levels, antagonizing TMPRSS2 or blocking DDP4 can improve the outcomes of COVID-19. Metformin and statins through immunomodulatory activities, Orlistat by reducing viral replication, and thiazolidinediones by upregulating ACE2 expression have potential beneficial effects against COVID-19. However, the combination of dipeptidyl peptidase-4 (DDP4] inhibitors and spironolactone/eplerenone seems to be more effective by reducing soluble ACE2 level, antagonizing TMPRSS2, maintaining ACE2 on cell membrane and reducing risk of viral entry into the cells.


2006 ◽  
Vol 81 (2) ◽  
pp. 954-963 ◽  
Author(s):  
Cecilia Johansson ◽  
Mari Jonsson ◽  
Marko Marttila ◽  
David Persson ◽  
Xiao-Long Fan ◽  
...  

ABSTRACT Most adenoviruses bind to the coxsackie- and adenovirus receptor (CAR). Surprisingly, CAR is not expressed apically on polarized cells and is thus not easily available to viruses. Consequently, alternative mechanisms for entry of coxsackievirus and adenovirus into cells have been suggested. We have found that tear fluid promotes adenovirus infection, and we have identified human lactoferrin (HLf) as the tear fluid component responsible for this effect. HLf alone was found to promote binding of adenovirus to epithelial cells in a dose-dependent manner and also infection of epithelial cells by adenovirus. HLf was also found to promote gene delivery from an adenovirus-based vector. The mechanism takes place at the binding stage and functions independently of CAR. Thus, we have identified a novel binding mechanism whereby adenovirus hijacks HLf, a component of the innate immune system, and uses it as a bridge for attachment to host cells.


2013 ◽  
Vol 91 (10) ◽  
pp. 839-847 ◽  
Author(s):  
Anmol Kumar ◽  
Krishna Kanth Pulicherla ◽  
Candasamy Mayuren ◽  
Seetharam Kotra ◽  
Krothapalli Rajasurya Sambasiva Rao

Reocclusion is one of the major root causes for secondary complications that arise during thrombolytic therapy. A multifunctional staphylokinase variant SRH (staphylokinase (SAK) linked with tripeptide RGD and didecapeptide Hirulog) with antiplatelet and antithrombin activities in addition to clot specific thrombolytic function, was developed to address the reocclusion problem. We preferred to use Escherichia coli GJ1158 as the host in this study for economic production of SRH by osmotic (0.3 mol/L sodium chloride) induction, to overcome the problems associated with the yeast expression system. The therapeutic potential of SRH was evaluated in the murine model of vascular thrombosis. The SAK protein (1 mg/kg body mass) and SRH protein (1 mg/kg and 2 mg/kg) were administered intravenously to the different treatment groups. The results have shown a dose-dependent antithrombotic effect in carrageenan-induced mouse tail thrombosis. The thrombin time, activated partial thromboplastin time, and prothrombin time were significantly prolonged (p < 0.05) in the SRH-infused groups. Moreover, SRH inhibited platelet aggregation in a dose-dependent manner (p < 0.05), while the bleeding time was significantly (p < 0.05) prolonged. All of these results inferred that the osmotically produced multifunctional fusion protein SRH (SAK–RGD–Hirulog) is a promising thrombolytic agent, and one which sustained its multifunctionality in the animal models.


2020 ◽  
Vol 27 (9) ◽  
pp. R281-R292 ◽  
Author(s):  
Neil A Bhowmick ◽  
Jillian Oft ◽  
Tanya Dorff ◽  
Sumanta Pal ◽  
Neeraj Agarwal ◽  
...  

The current pandemic (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health challenge with active development of antiviral drugs and vaccines seeking to reduce its significant disease burden. Early reports have confirmed that transmembrane serine protease 2 (TMPRSS2) and angiotensin converting enzyme 2 (ACE2) are critical targets of SARS-CoV-2 that facilitate viral entry into host cells. TMPRSS2 and ACE2 are expressed in multiple human tissues beyond the lung including the testes where predisposition to SARS-CoV-2 infection may exist. TMPRSS2 is an androgen-responsive gene and its fusion represents one of the most frequent alterations in prostate cancer. Androgen suppression by androgen deprivation therapy and androgen receptor signaling inhibitors form the foundation of prostate cancer treatment. In this review, we highlight the growing evidence in support of androgen regulation of TMPRSS2 and ACE2 and the potential clinical implications of using androgen suppression to downregulate TMPRSS2 to target SARS-CoV-2. We also discuss the future directions and controversies that need to be addressed in order to establish the viability of targeting TMPRSS2 and/or ACE2 through androgen signaling regulation for COVID-19 treatment, particularly its relevance in the context of prostate cancer management.


Sign in / Sign up

Export Citation Format

Share Document