scholarly journals H295R expression of melanocortin 2 receptor accessory protein results in ACTH responsiveness

2015 ◽  
Vol 56 (2) ◽  
pp. 69-76 ◽  
Author(s):  
Kazutaka Nanba ◽  
Andrew X Chen ◽  
Adina F Turcu ◽  
William E Rainey

The H295R adrenocortical cell line is widely used for molecular analysis of adrenal functions but is known to have only modest ACTH responsiveness. The lack of ACTH response was linked to a low expression of its receptor, melanocortin 2 receptor (MC2R). We hypothesized that increasing the MC2R accessory protein (MRAP), which is required to traffic MC2R from the endoplasmic reticulum to the cell surface, would increase ACTH responsiveness. Lentiviral particles containing human MRAP-open reading frame were generated and transduced in H295R cells. Using antibiotic resistance, 18 clones were isolated for characterization. The most ACTH-responsive steroidogenic clone, H295RA, was used for further experiments. Successful induction of MRAP and increased expression of MC2R in H295RA cells was confirmed by quantitative real-time RT-PCR and protein analysis. Treatment with ACTH significantly increased aldosterone, cortisol, and dehydroepiandrosterone production in H295RA cells. ACTH also significantly increased transcript levels for all of the steroidogenic enzymes required to produce aldosterone, cortisol, and dehydroepiandrosterone, as well as MC2R mRNA. Using liquid chromatography/tandem mass spectrometry, we further revealed that the main unconjugated steroids produced in H295RA cells were 11-deoxycortisol, cortisol, and androstenedione. Treatment of H295RA cells with ACTH also acutely increased cAMP production and cellular protein levels for total and phosphorylated steroidogenic acute regulatory protein. In summary, through genetic manipulation, we have developed an ACTH-responsive human adrenocortical cell line. The cell line will provide a powerful in vitro tool for molecular analysis of physiologic and pathologic conditions involving the hypothalamic–pituitary–adrenal axis.

2007 ◽  
Vol 26 (4) ◽  
pp. 333-338 ◽  
Author(s):  
Anna Forsby ◽  
Bas Blaauboer

Risk assessment of neurotoxicity is mainly based on in vivo exposure, followed by tests on behaviour, physiology and pathology. In this study, an attempt to estimate lowest observed neurotoxic doses after single or repeated dose exposure was performed. Differentiated human neuroblastoma SH-SY5Y cells were exposed to acrylamide, lindane, parathion, paraoxon, phenytoin, diazepam or caffeine for 72 hours. The effects on protein synthesis and intracellular free Ca2+concentration were studied as physiological endpoints. Voltage operated Ca2 +channel function, acetylcholine receptor function and neurite degenerative effects were investigated as neurospecific endpoints for excitability, cholinergic signal transduction and axonopathy, respectively. The general cytotoxicity, determined as the total cellular protein levels after the 72 hours exposure period, was used for comparison to the specific endpoints and for estimation of acute lethality. The lowest concentration that induced 20% effect (EC 20) obtained for each compound, was used as a surrogate for the lowest neurotoxic level (LOEL) at the target site in vivo. The LOELs were integrated with data on adsorption, distribution, metabolism and excretion of the compounds in physiologically-based biokinetic (PBBK) models of the rat and the lowest observed effective doses (LOEDs) were estimated for the test compounds. A good correlation was observed between the estimated LOEDs and experimental LOEDs found in literature for rat for all test compounds, except for diazepam. However, when using in vitro data from the literature on diazepam's effect on gamma-amino butyric acid (GABA)A receptor function for the estimation of LOED, the correlation between the estimated and experimental LOEDs was improved from a 10 000-fold to a 10-fold difference. Our results indicate that it is possible to estimate LOEDs by integrating in vitro toxicity data as surrogates for lowest observed target tissue levels with PBBK models, provided that some knowledge about toxic mechanisms is known. Human & Experimental Toxicology (2007) 26, 333—338


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3727
Author(s):  
Petey W. Mumford ◽  
Shelby C. Osburn ◽  
Carlton D. Fox ◽  
Joshua S. Godwin ◽  
Michael D. Roberts

There is evidence in rodents to suggest that theacrine-based supplements modulate tissue sirtuin activity as well as other biological processes associated with aging. Herein, we examined if a theacrine-based supplement (termed NAD3) altered sirtuin activity in vitro while also affecting markers of mitochondrial biogenesis. The murine C2C12 myoblast cell line was used for experimentation. Following 7 days of differentiation, myotubes were treated with 0.45 mg/mL of NAD3 (containing ~2 mM theacrine) for 3 and 24 h (n = 6 treatment wells per time point). Relative to control (CTL)-treated cells, NAD3 treatments increased (p < 0.05) Sirt1 mRNA levels at 3 h, as well as global sirtuin activity at 3 and 24 h. Follow-up experiments comparing 24 h NAD3 or CTL treatments indicated that NAD3 increased nicotinamide phosphoribosyltransferase (NAMPT) and SIRT1 protein levels (p < 0.05). Cellular nicotinamide adenine dinucleotide (NAD+) levels were also elevated nearly two-fold after 24 h of NAD3 versus CTL treatments (p < 0.001). Markers of mitochondrial biogenesis were minimally affected. Although these data are limited to select biomarkers in vitro, these preliminary findings suggest that a theacrine-based supplement can modulate select biomarkers related to NAD+ biogenesis and sirtuin activity. However, these changes did not drive increases in mitochondrial biogenesis. While promising, these data are limited to a rodent cell line and human muscle biopsy studies are needed to validate and elucidate the significance of these findings.


Blood ◽  
2006 ◽  
Vol 109 (2) ◽  
pp. 836-842 ◽  
Author(s):  
Hui Wang ◽  
Jon VerHalen ◽  
Maria Lucia Madariaga ◽  
Shuanglin Xiang ◽  
Shumei Wang ◽  
...  

Abstract Signal regulatory protein α (SIRPα) is a critical immune inhibitory receptor on macrophages, and its interaction with CD47, a ligand for SIRPα, prevents autologous phagocytosis. We hypothesized that interspecies incompatibility of CD47 may contribute to the rejection of xenogeneic cells by macrophages. Here, we show that pig CD47 does not interact with mouse SIPRα. Similar to CD47−/− mouse cells, porcine red blood cells (RBCs) failed to induce SIRPα tyrosine phosphorylation in mouse macrophages. Blocking SIRPα with antimouse SIRPα mAb (P84) significantly enhanced the phagocytosis of CD47+/+ mouse cells, but did not affect the engulfment of porcine or CD47−/− mouse cells by mouse macrophages. CD47-deficient mice, whose macrophages do not phagocytose CD47−/− mouse cells, showed markedly delayed clearance of porcine RBCs compared with wild-type mouse recipients. Furthermore, mouse CD47 expression on porcine cells markedly reduced their phagocytosis by mouse macrophages both in vitro and in vivo. These results indicate that interspecies incompatibility of CD47 contributes significantly to phagocytosis of xenogeneic cells by macrophages and suggest that genetic manipulation of donor CD47 to improve its interaction with the recipient SIRPα may provide a novel approach to prevent phagocyte-mediated xenograft rejection.


2007 ◽  
Vol 292 (5) ◽  
pp. E1456-E1464 ◽  
Author(s):  
Griselda Irusta ◽  
Fernanda Parborell ◽  
Marta Tesone

Our objective was to study the direct action of a GnRH-I agonist, leuprolide acetate (LA), on ovarian steroidogenesis in preovulatory follicles obtained from equine chorionic gonadotropin (eCG)-treated rats. Previously, we have demonstrated an inhibitory effect of LA on steroidogenesis and follicular development. In this study, we tested the hypothesis that gonadotropin-releasing hormone (GnRH) exerts its negative effect on follicular development by inhibiting thecal cytochrome P-450 C17 (P450C17) α-hydroxylase expression and, consequently, androgen synthesis. Studies were carried out in prepubertal female rats injected with either eCG (control) or eCG plus LA (LA) and killed at different time points. Immunohistochemical studies indicated that LA induced steroidogenic acute regulatory protein (StAR) expression mainly in theca cells of preantral and antral follicles. In addition, serum progesterone levels increased significantly ( P < 0.05), whereas those of androsterone decreased ( P < 0.05) after 8 h of LA treatment. This inhibition caused by LA seemed to be a consequence of the decreased expression of follicular P450C17 α-hydroxylase, as demonstrated by Western blot and RT-PCR techniques. In vitro studies using follicles isolated from 48-h-eCG-treated rats and cultured with LA showed a significant ( P < 0.05) inhibition of FSH-induced androsterone follicular content as well as P450C17 α-hydroxylase protein levels, as determined by Western analysis. However, LA increased StAR protein expression in these follicles without significant changes in P450scc enzyme levels. Taking all these findings into account, we suggest that GnRH-I exerts a direct inhibitory action on gonadotropin-induced follicular development by decreasing the temporal expression of the P450C17 enzyme and, consequently, androgen production, thus reducing the supply of estrogens available to developing follicles.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4318-4318 ◽  
Author(s):  
Julian Baumeister ◽  
Nicolas Chatain ◽  
Annika Hubrich ◽  
Caroline Küstermann ◽  
Stephanie Sontag ◽  
...  

Abstract Myeloproliferative neoplasms (MPN) are a heterogeneous group of malignancies including polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). The JAK2V617F mutation can be found in 90% of PV and approximately 50% of ET and PMF patients. Hypoxia-inducible factors (HIFs) are master transcriptional regulators of the response to decreases in cellular oxygen levels. Unveiling the function of deregulated HIF-1 signaling in normal and malignant hematopoiesis was the aim of several recent publications, highlighting the importance of HIF-1 for the maintenance of leukemic stem cells (LSCs) in acute and chronic myeloid leukemia (AML/CML). In a JAK2V617F knock-in mouse model and in patients, JAK2V617F was shown to induce the accumulation of reactive oxygen species (ROS) in the hematopoietic stem cell compartment, leading to a stabilization of HIF-1α protein. Further, aberrant STAT5 and PI3K/AKT/mTOR signaling induced HIF-1α expression on the transcriptional and translational level. Ruxolitinib treatment inhibited growth and reduced the expression of HIF-1α and its target gene VEGF in the JAK2V617F human erythroleukemia cell line HEL. In several leukemic cell lines constitutive expression of HIF-1α was reported, even under normoxic conditions. However, it still remains unknown whether HIF-1α plays a role in JAK2V617F positive MPN. In this study, we investigated the role HIF-1α signaling in JAK2V617F positive MPN in vitro. We retrovirally transduced the murine bone marrow cell line 32D with JAK2V617F or JAK2WT. Western blot analysis revealed significant increases in HIF-1α protein levels in JAK2V617F positive cells compared to JAK2WT controls after cultivation in normoxic conditions and this effect was abrogated by treatment with the JAK1/JAK2 inhibitor ruxolitinib. Inhibition of HIF-1, binding to hypoxia response elements (HRE), by low doses of echinomycin (1 nM), significantly impaired proliferation and survival. Using an Annexin-V/7-AAD flow cytometry assay apoptosis was found to be selectively induced in JAK2V617F positive, but not JAK2WT cells after echinomycin treatment. Additionally, BrdU/7-AAD cell cycle analysis revealed that only JAK2V617F positive cells were significantly arrested in G0/1 phase. These findings were consistent with shRNA-mediated knockdown (KD) of HIF-1α in JAK2V617F transduced 32D cells in presence but not the absence of HIF-2 antagonist 2. Inhibition of HIF-2 was necessary due to a compensatory increase of HIF-2α protein levels, shown by Western Blot analysis, counteracting HIF-1α-KD mediated effects. We isolated PBMCs and BMMNCs from JAK2V617F positive patients or healthy controls using Ficoll density gradient centrifugation. Echinomycin significantly abrogated the colony formation ability alone and in combination with ruxolitinib. In vitro treatment with echinomycin significantly decreased cell number and viability of 8 JAK2V617F positive BMMNC samples (4 PV, 3 PMF, 1 preMF; p[1nM]=0.0169, p[5nM]=0.0009) and 7 PBMC samples (6 PV, 1 PMF; p[1nM]=0.0156, p[5nM]=0.0156) in a dose-dependent manner. In contrast, PBMCs from 6 healthy donors were unaffected by the treatment. The same effect was observed in heterozygous and homozygous iPS cell-derived progenitors from JAK2V617F positive PV patients, whereas JAK2WT cells were unaffected by the treatment. Collectively, our data indicate that targeting HIF-1 might represent a novel therapeutic approach in classical Philadelphia-chromosome-negative MPN. Disclosures Brümmendorf: Pfizer: Consultancy, Research Funding; Novartis: Consultancy, Research Funding; Janssen: Consultancy; Merck: Consultancy; Takeda: Consultancy.


2006 ◽  
Vol 34 (2) ◽  
pp. 151-175 ◽  
Author(s):  
Richard Clothier ◽  
Elke Gottschalg ◽  
Silvia Casati ◽  
Michael Balls

A database of over 280 chemicals has been compiled by using a mouse 3T3-L1 fibroblast-like cell line in exponential growth, exposed to chemicals for 72 hours in a 96-well tissue culture plate format, and determining cell number via the Kenacid blue (KB) assay for total protein. Ranking the chemicals according to their basal cytotoxicity, expressed as the concentration (mM) that inhibits increase in total cellular protein over 72 hours by 50% (the ID50 value) shows a wide range of ID50 values, from 0.00003mM to 10,096mM. This information includes the results for MEIC chemicals 1–50, and we have now added basal cytotoxicity data for 23 of the next 25 MEIC chemicals. When the neutral red uptake (NRU) assay was performed with the same cell cultures, before the KB assay, very similar indications of basal cytotoxicity were obtained. Comparisons between the results with 3T3-L1 cells and with a human fibroblast-like cell line, BCL-D1 showed a significant difference in order of magnitude of the ID50 value for only 5 of 52 chemicals. However, there was a difference in ID50 value of more than one order of magnitude for 8 of 24 chemicals tested with an undifferentiated teratocarcinoma cell line, F9.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3506-3506
Author(s):  
Ya-Wei Qiang ◽  
Nathan Brown ◽  
Yu Chen ◽  
Shmuel Yaccoby ◽  
Bart Barlogie ◽  
...  

Abstract We have demonstrated that canonical and non-canonical Wnt signaling occurs in myeloma cells (Qiang et al., 2005) and overexpression of Wnt3a in myeloma cells inhibits the osteolytic phenotype and also tumor growth in vivo (Qiang et al Blood, Abstract #3420, 2006). To further investigate the mechanisms that contribute to this process we have expanded our in vivo data by showing that while H929 cells stably expressing Wnt3a (H929/W3a) leads to reduced tumor growth in the in-vivo SCID-hu bone graft model compared with H929 vector alone transfected control cells (H929/EV), there was no significant difference in the subcutaneous growth of the two cell lines in SCID mice. Taken together these data suggests that alteration of the human bone marrow microenvironment is central to Wnt-mediated reduction in tumor growth in bone. We next employed an in-vitro co-culture model in which the mouse osteoprogenitor cell line, C2C12, and human osteoblast cell line, Saos-2 were co-cultured with either H929/Wnt3 or H929/EV cells. QPCR analysis demonstrated that osteoprotegerin (OPG) mRNA expression (relative OPG mRNA to GAPDH) in C2C12 cells co-cultured with H929/W3a was significantly elevated compared with H929/EV (mean±SD: 14.34±0.97 vs 8.43±0.16; P<0.001). ELISA analysis showed that OPG protein levels in the cell culture supernatant were also significantly higher (71.02 ± 6.178 vs 0 pg/ml; P<0.001). Similar results in OPG mRNA and protein levels were observed in Saos-2 cells co-cultured with H929/W3a relative to H929/EV. Furthermore, treatment of C2C12 cells with recombinant Wnt3a protein induced both OPG mRNA (48.1 ±1.2 vs 1.0±0.5; P<0.001) and protein levels (1767.03 ± 44.8 vs 1.11 ± 0.03 p< 0.0001) compared with vehicle alone. These results suggest that forced expression of a canonical Wnt ligand by MM cells might promote OPG transcription in osteoblast progenitors in-vivo. To further confirm the role of Wnt signaling in regulation of OPG and RANKL transcription, we produced C2C12 cells that stably express Dkk1. These clones showed a significant inhibition of Wnt3a induced OPG mRNA (22.2± 2.3 vs 1.7±0.35; p<0.001) and protein (73.3 ± 18.0 vs. 0 pg/ml; p<0.01) compared with vector control. In contrast, RANKL mRNA (5.1±0.9 vs 1.0± 0.5, p<0.01) and protein (9.3±3.8 vs. 0 pg/ml; p<0.01) were increased in Dkk1 expressing clones compared with control. Moreover, supernatant from C2C12 clones stably expressing a DN-beta-catenin (DNBC/C2C12) contained a significantly higher level of RANKL (17.3± 3.5 pg/ml vs. 0±0; P<0.001) and a dramatically lower level of OPG protein (0±0 vs. 431.186 pg/ml; P<0.001) compared with control. Finally, the numbers of multinuclear TRAP-positive osteoclasts were significantly more abundant in culture containing supernatant from DNBC/C2C12 than that from vector control, while Wnt3a exposure had no effect on osteoclast formation in-vitro. Taken together, these data suggest that Wnt ligand-mediated inhibition of myeloma cell growth, and inhibition of osteolytic lesions, in-vivo may result from upregulation of OPG and loss of RANKL in osteoblast progenitors, which subsequently diminishes osteoclast formation. Results of these studies provide new insights into mechanism by which Wnts may serve as an important indirect regulator of myeloma growth and osteoclast formation, and as such, targeting Wnt signaling may be an new therapeutic strategy for controlling myeloma growth and associated bone disease.


2004 ◽  
Vol 78 (3) ◽  
pp. 1181-1194 ◽  
Author(s):  
Armin Baiker ◽  
Christoph Bagowski ◽  
Hideki Ito ◽  
Marvin Sommer ◽  
Leigh Zerboni ◽  
...  

ABSTRACT The immediate-early 63-kDa (IE63) protein of varicella-zoster virus (VZV) is a phosphoprotein encoded by open reading frame (ORF) ORF63/ORF70. To identify functional domains, 22 ORF63 mutations were evaluated for effects on IE63 binding to the major VZV transactivator, IE62, and on IE63 phosphorylation and nuclear localization in transient transfections, and after insertion into the viral genome with VZV cosmids. The IE62 binding site was mapped to IE63 amino acids 55 to 67, with R59/L60 being critical residues. Alanine substitutions within the IE63 center region showed that S165, S173, and S185 were phosphorylated by cellular kinases. Four mutations that changed two putative nuclear localization signal (NLS) sequences altered IE63 distribution to a cytoplasmic/nuclear pattern. Only three of 22 mutations in ORF63 were compatible with recovery of infectious VZV from our cosmids, but infectivity was restored by inserting intact ORF63 into each mutated cosmid. The viable IE63 mutants had a single alanine substitution, altering T171, S181, or S185. These mutants, rOKA/ORF63rev[T171], rOKA/ORF63rev[S181], and rOKA/ORF63rev[S185], produced less infectious virus and had a decreased plaque phenotype in vitro. ORF47 kinase protein and glycoprotein E (gE) synthesis was reduced, indicating that IE63 contributed to optimal expression of early and late gene products. The three IE63 mutants replicated in skin xenografts in the SCIDhu mouse model, but virulence was markedly attenuated. In contrast, infectivity in T-cell xenografts was not altered. Comparative analysis suggested that IE63 resembled the herpes simplex virus type 1 US1.5 protein, which is expressed colinearly with ICP22 (US1). In summary, most mutations of ORF63 made with our VZV cosmid system were lethal for infectivity. The few IE63 changes that were tolerated resulted in VZV mutants with an impaired capacity to replicate in vitro. However, the IE63 mutants were attenuated in skin but not T cells in vivo, indicating that the contribution of the IE63 tegument/regulatory protein to VZV pathogenesis depends upon the differentiated human cell type which is targeted for infection within the intact tissue microenvironment.


2016 ◽  
Vol 23 (6) ◽  
pp. 481-493 ◽  
Author(s):  
Régia Caroline Peixoto Lira ◽  
Paola Fernanda Fedatto ◽  
David Santos Marco Antonio ◽  
Letícia Ferro Leal ◽  
Carlos Eduardo Martinelli ◽  
...  

Deregulation of the IGF system observed in human tumors indicates a role in malignant cell transformation and in tumor cell proliferation. Although overexpression of theIGF2andIGF1Rgenes was described in adrenocortical tumors (ACTs), few studies reported their profiles in pediatric ACTs. In this study, theIGF2andIGF1Rexpression was evaluated by RT-qPCR according to the patient’s clinical/pathological features in 60 pediatric ACT samples, and IGF1R protein was investigated in 45 samples by immunohistochemistry (IHC). Whole transcriptome and functional assays were conducted after IGF1R inhibition with OSI-906 in NCI-H295A cell line. SignificantIGF2overexpression was found in tumor samples when compared with non-neoplastic samples (P<0.001), significantly higher levels ofIGF1Rin patients with relapse/metastasis (P=0.031) and moderate/strong IGF1R immunostaining in 62.2% of ACTs, but no other relationship with patient survival and clinical/pathological features was observed. OSI-906 treatment downregulated genes associated with MAPK activity, induced limited reduction of cell viability and increased the apoptosis rate. After 24h, the treatment also decreased the expression of genes related to the steroid biosynthetic process, the protein levels of the steroidogenic acute regulatory protein (STAR), and androgen secretion in cell medium, supporting the role of IGF1R in steroidogenesis of adrenocortical carcinoma cells. Our data showed that theIGF1Roverexpression could be indicative of aggressive ACTs in children. However,in vitrotreatments with high concentrations of OSI-906 (>1μM) showed limited reduction of cell viability, suggesting that OSI-906 alone could not be a suitable therapy to abolish carcinoma cell growth.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 280
Author(s):  
Laura Bizzozero ◽  
Margherita Pergolizzi ◽  
Davide Pascal ◽  
Elena Maldi ◽  
Giulia Villari ◽  
...  

Many nervous proteins are expressed in cancer cells. In this report, we asked whether the synaptic protein neuroligin 1 (NLGN1) was expressed by prostatic and pancreatic carcinomas; in addition, given the tendency of these tumors to interact with nerves, we asked whether NLGN1 played a role in this process. Through immunohistochemistry on human tissue microarrays, we showed that NLGN1 is expressed by prostatic and pancreatic cancer tissues in discrete stages and tumor districts. Next, we performed in vitro and in vivo assays, demonstrating that NLGN1 promotes cancer cell invasion and migration along nerves. Because of the established role of the neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) in tumor–nerve interactions, we assessed a potential NLGN1–GDNF cooperation. We found that blocking GDNF activity with a specific antibody completely inhibited NLGN1-induced in vitro cancer cell invasion of nerves. Finally, we demonstrated that, in the presence of NLGN1, GDNF markedly activates cofilin, a cytoskeletal regulatory protein, altering filopodia dynamics. In conclusion, our data further prove the existence of a molecular and functional cross-talk between the nervous system and cancer cells. NLGN1 was shown here to function along one of the most represented neurotrophic factors in the nerve microenvironment, possibly opening new therapeutic avenues.


Sign in / Sign up

Export Citation Format

Share Document