scholarly journals Glial-derived neurotrophic factor promotes ovarian primordial follicle development and cell–cell interactions during folliculogenesis

Reproduction ◽  
2008 ◽  
Vol 135 (5) ◽  
pp. 671-682 ◽  
Author(s):  
Gretchen Dole ◽  
Eric E Nilsson ◽  
Michael K Skinner

Female fertility is determined in part by the size and development of the primordial follicle pool. The current study investigates the role of glial cell-line-derived neurotrophic factor (GDNF) in the regulation of primordial follicle development in the ovary. Ovaries from 4-day-old female rat pups were maintained in organ culture for 10 days in the absence (control) or presence of GDNF or kit ligand (KL)/stem cell factor. Ovaries treated with GDNF contained a significant increase in developing follicles, similar to that observed with KL treatment previously shown to promote follicle development. The actions of GDNF on the ovarian transcriptome were investigated with a microarray analysis. Immunohistochemical studies demonstrated that GDNF is localized to oocyte cytoplasm in follicles of all developmental stages, as well as to cumulus granulosa cells and theca cells in antral follicles. GDNF receptor α1 (GFRα1) staining was localized to oocyte cytoplasm of primordial and primary follicles, and at reduced levels in the oocytes of antral follicles. GFRα1 was present in mural granulosa cells of antral follicles, theca cells, and ovarian surface epithelium. The localization studies were confirmed with molecular analysis. Microarray analysis was used to identify changes in the ovarian transcriptome and further elucidate the signaling network regulating early follicle development. Observations indicate that GDNF promotes primordial follicle development and mediates autocrine and paracrine cell–cell interactions required during folliculogenesis. In contrast to the testis, ovarian GDNF is predominantly produced by germ cells (oocytes) rather than somatic cells.

2011 ◽  
Vol 23 (1) ◽  
pp. 32 ◽  
Author(s):  
J. Buratini ◽  
C. A. Price

Considerable attention is currently paid to oocyte-derived secreted factors that act upon cumulus and granulosa cells. Also important for follicle development are somatic cell-derived secreted factors. This is illustrated by the ability of granulosa cell-derived Kit ligand (KITL) to promote primordial follicle activation, and the loss of follicle development that accompanies KITL gene disruption. This review summarises our current understanding of somatic cell factors during both preantral and antral follicle growth, involving not only signalling from granulosa cells to the oocyte, but also signalling between granulosa and theca cells. Principal granulosa cell-derived factors include activin, anti-Müllerian hormone (AMH), bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs). Theca cells also secrete BMPs and FGFs. The interplay between these factors is equally important for follicle growth as the activity of oocyte-derived factors.


Zygote ◽  
2006 ◽  
Vol 14 (4) ◽  
pp. 317-328 ◽  
Author(s):  
J.R.V. Silva ◽  
R. van den Hurk ◽  
H.T.A. van Tol ◽  
B.A.J. Roelen ◽  
J.R. Figueiredo

SummaryRelatively little information is available on the local factors that regulate folliculogenesis in goats. To examine the possibility that the Kit ligand (KL) system is expressed throughout the folliculogenesis, we studied the presence and distribution of KL and its receptor, c-Kit, in goat ovaries. Ovaries of goats were collected and either fixed in paraformaldehyde for immunohistochemical localization of KL and c-Kit proteins, or used for the isolation of follicles, luteal cells, surface epithelium and medullary samples to study mRNA expression for KL and c-Kit, using the reverse transcriptase polymerase chain reaction (RT-PCR). KL protein and mRNA were found in follicles at all stages of development, i.e. primordial, primary, secondary, small and large antral follicles, as well as in corpora lutea, surface epithelium and medullary tissue. Antral follicles expressed both KL-1 and KL-2 mRNAs, while earlier staged follicles expressed KL-1 transcript only. KL protein was demonstrated in granulosa cells from the primordial follicle onward. Its mRNA could be detected in granulosa cells isolated from antral follicles and occasionally in their theca cells. c-Kit mRNA was expressed in all antral follicular compartments and at all stages of follicular development. c-Kit protein was predominantly found in oocytes from the primordial follicle stage onwards, in theca cells of antral follicles, as well as in corpora lutea, surface epithelium and medullary tissue, particularly in the wall of blood vessels, which may indicate these cells as the main sites of action of KL. It is concluded that the KL/c-Kit system, in goat ovaries, is widespread and that it may be involved in the regulation of various local processes, including folliculogenesis and luteal activity.


10.2741/a893 ◽  
2002 ◽  
Vol 7 (4) ◽  
pp. d1990-1996 ◽  
Author(s):  
Michael K Skinner

Reproduction ◽  
2014 ◽  
Vol 148 (3) ◽  
pp. 321-331 ◽  
Author(s):  
Amanda Feeney ◽  
Eric Nilsson ◽  
Michael K Skinner

An ovarian follicle is composed of an oocyte and surrounding theca and granulosa cells. Oocytes are stored in an arrested state within primordial follicles until they are signaled to re-initiate development by undergoing primordial-to-primary follicle transition. Previous gene bionetwork analyses of primordial follicle development identified a number of critical cytokine signaling pathways and genes potentially involved in the process. In the current study, candidate regulatory genes and pathways from the gene network analyses were tested for their effects on the formation of primordial follicles (follicle assembly) and on primordial follicle transition using whole ovary organ culture experiments. Observations indicate that the tyrphostin inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased follicle assembly significantly, supporting a role for the MAPK signaling pathway in follicle assembly. The cytokine interleukin 16 (IL16) promotes primordial-to-primary follicle transition as compared with the controls, where as Delta-like ligand 4 (DLL4) and WNT-3A treatments have no effect. Immunohistochemical experiments demonstrated the localization of both the cytokine IL16 and its receptor CD4 in the granulosa cells surrounding each oocyte within the ovarian follicle. The tyrphostin LDN193189 (LDN) is an inhibitor of the bone morphogenic protein receptor 1 within the TGFB signaling pathway and was found to promote the primordial-to-primary follicle transition. Observations support the importance of cytokines (i.e., IL16) and cytokine signaling pathways in the regulation of early follicle development. Insights into regulatory factors affecting early primordial follicle development are provided that may associate with ovarian disease and translate to improved therapy in the future.


Reproduction ◽  
2001 ◽  
pp. 561-566 ◽  
Author(s):  
DA Porter ◽  
RM Harman ◽  
RG Cowan ◽  
SM Quirk

The Fas antigen (Fas) is a cell surface receptor that may be involved in the initiation and progression of follicle cell apoptosis during atresia. Fas initiates apoptosis in sensitive cells after binding Fas ligand (FasL). Other experiments have shown that expression of Fas mRNA and responsiveness to Fas-mediated apoptosis vary in bovine granulosa and theca cells during follicle development. In the present study, FasL mRNA content was measured and Fas and FasL protein expression was examined in bovine granulosa and theca cells of healthy dominant follicles and the two largest atretic subordinate follicles on day 5 of the oestrous cycle (day 0 = oestrus), and of dominant follicles from the first wave of follicle development after they had become atretic and showed no growth for 4 days. FasL mRNA content was higher in granulosa cells from atretic compared with healthy follicles. FasL mRNA content was also higher in theca cells from atretic subordinate compared with healthy dominant follicles on day 5, but did not differ between theca cells from healthy and atretic dominant follicles. Immunohistochemical staining for FasL was more intense in theca compared with granulosa cells and in atretic compared with healthy follicles. Immunohistochemical staining for Fas was more intense in granulosa compared with theca cells and in atretic subordinate compared with healthy dominant follicles on day 5. Immune cells, known to express Fas and FasL, were localized in the theca, but not the granulosa, cell layer of all follicles. Higher concentrations of Fas and FasL in cells from atretic follicles, together with the previous demonstration of increased responsiveness of granulosa cells from subordinate follicles to FasL-induced apoptosis, support a potential role for FasL-mediated apoptosis during ovarian follicle atresia.


Endocrinology ◽  
2012 ◽  
Vol 153 (9) ◽  
pp. 4533-4543 ◽  
Author(s):  
Bruce K. Campbell ◽  
M. Clinton ◽  
R. Webb

Knockout studies in mice have suggested that anti-Müllerian hormone (AMH) modulates primordial follicle recruitment and the response of growing follicles to FSH. Little is known of the physiology of AMH in monovular species, despite intense clinical interest in this factor. Using sheep as a model, we sought to investigate the functional role of AMH in modulating follicle development in monovular species. In contrast to the rodent, the results indicate that AMH does not affect the rate of primordial follicle recruitment but appears to regulate the rate at which follicles progress through the gonadotropin-responsive phase, during which it is maximally expressed. Thus, knockdown of AMH bioactivity by active immunization lead to a decline in the population of gonadotropin-responsive preantral and small antral follicles (P < 0.01) and increases in both the number of gonadotropin-dependent antral follicles (P < 0.01) and ovulation rate (P < 0.05). These in vivo findings were consistent with the results of other studies examining the pattern of expression of AMH, which was negatively correlated with aromatase (P < 0.001), and in vitro supplementation experiments, which supported an inhibitory role for AMH in modulating the response of both theca and granulosa cells to LH and FSH, respectively. The elucidation of a functional relationship between AMH and LH-stimulated thecal androgen production may be significant in terms of the etiology of common forms of anovulatory infertility in women. Furthermore, the observed increase in both the number of recruitable antral follicles and ovulatory quota in response to AMH knockdown may have therapeutic value in women who respond poorly to ovarian stimulation.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1083 ◽  
Author(s):  
Weihe Niu ◽  
Izhar Hyder Qazi ◽  
Sichen Li ◽  
Xiaoling Zhao ◽  
Huadong Yin ◽  
...  

In this study, using a laying hen model, we determined the expression of FOXL2 and RSPO1 in different central and peripheral tissue and ovarian follicles at different stages of development. At the same time, mRNA expression of both genes in granulosa and theca cells harvested from follicles at different stages of folliculogenesis was also evaluated. Finally, we assessed the effect of leptin treatment on expression of FOXL2 and RSPO1 in in vitro cultured granulosa cells harvested from 1–5 mm to F3–F1 follicles. Our RT-qPCR results revealed that a comparatively higher expression of FOXL2 and RSPO1 was observed in ovary, hypothalamus, and pituitary. Abundant mRNA expression of FOXL2 was observed in small prehierarchical follicles (1–1.9 and 2–2.9 mm follicles; p < 0.05), whereas mRNA expression of RSPO1 showed an increasing trend in large hierarchical follicles (F5–F1), and its abundant expression was observed in post-ovulatory follicles. FOXL2 mRNA expression was stable in granulosa cells harvested from 3–5 mm to F4 follicles, and exhibited a significantly higher expression in large hierarchical follicles. Conversely, relatively low mRNA expression of FOXL2 was observed in theca cells. RSPO1 mRNA expression was relatively lower in granulosa cells; however, theca cells exhibited a significantly higher mRNA expression of RSPO1 in F4 to F1 follicles. In the next experiment, we treated the in vitro cultured granulosa cells with different concentrations (1, 10, 100, and 1000 ng/mL) of exogenous leptin. Compared to the control group, a significant increase in the expression of FOXL2 was observed in groups treated with 1, 10, and 100 ng/mL leptin, whereas expression of RSPO1 was increased in all leptin-treated groups. When treated with 100 ng/mL leptin, FOXL2 and RSPO1 expression was upregulated in cultured granulosa cells harvested from both large hierarchical (F3–F1) and small prehierarchical follicles (1–5 mm). Based on these findings and evidence from mainstream literature, we envisage that FOXL2 and RSPO1 genes (in connection with hypothalamic-hypophysis axis) and leptin (via modulation of FOXL2 and RSPO1 expression) might have significant physiological roles, at least in part, in modulating the ovarian mechanisms, such as follicle development, selection, and steroidogenesis in laying hens.


Reproduction ◽  
2006 ◽  
Vol 132 (2) ◽  
pp. 191-206 ◽  
Author(s):  
Phil G Knight ◽  
Claire Glister

In recent years, exciting progress has been made towards unravelling the complex intraovarian control mechanisms that, in concert with systemic signals, coordinate the recruitment, selection and growth of follicles from the primordial stage through to ovulation and corpus luteum formation. A plethora of growth factors, many belonging to the transforming growth factor-β (TGF-β ) superfamily, are expressed by ovarian somatic cells and oocytes in a developmental, stage-related manner and function as intraovarian regulators of folliculogenesis. Two such factors, bone morphogenetic proteins, BMP-4 and BMP-7, are expressed by ovarian stromal cells and/or theca cells and have recently been implicated as positive regulators of the primordial-to-primary follicle transition. In contrast, evidence indicates a negative role for anti-Mullerian hormone (AMH, also known as Mullerian-inhibiting substance) of pre-granulosa/granulosa cell origin in this key event and subsequent progression to the antral stage. Two other TGF-β superfamily members, growth and differentiation factor-9 (GDF-9) and BMP-15 (also known as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play key roles in promoting follicle growth beyond the primary stage; mice with null mutations in the gdf-9 gene or ewes with inactivating mutations in gdf-9 or bmp-15 genes are infertile with follicle development arrested at the primary stage. Studies on later stages of follicle development indicate positive roles for granulosa cell-derived activin, BMP-2, -5 and -6, theca cell-derived BMP-2, -4 and -7 and oocyte-derived BMP-6 in promoting granulosa cell proliferation, follicle survival and prevention of premature luteinization and/or atresia. Concomitantly, activin, TGF-β and several BMPs may exert paracrine actions on theca cells to attenuate LH-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection in monovular species may depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Changes in intrafollicular activins, GDF-9, AMH and several BMPs may contribute to this selection process by modulating both FSH- and IGF-dependent signalling pathways in granulosa cells. Activin may also play a positive role in oocyte maturation and acquisition of developmental competence. In addition to its endocrine role to suppress FSH secretion, increased output of inhibin by the selected dominant follicle(s) may upregulate LH-induced androgen secretion that is required to sustain a high level of oestradiol secretion during the pre-ovulatory phase. Advances in our understanding of intraovarian regulatory mechanisms should facilitate the development of new approaches for monitoring and manipulating ovarian function and improving fertility in domesticated livestock, endangered species and man.


Reproduction ◽  
2005 ◽  
Vol 130 (3) ◽  
pp. 343-350 ◽  
Author(s):  
J Buratini ◽  
A B Teixeira ◽  
I B Costa ◽  
V F Glapinski ◽  
M G L Pinto ◽  
...  

Paracrine cell signaling is believed to be important for ovarian follicle development, and a role for some members of the fibroblast growth factor (FGF) family has been suggested. In the present study, we tested the hypothesis that FGF-8 and its cognate receptors (FGFR3c and FGFR4) are expressed in bovine antral follicles. RT-PCR was used to analyze bovineFgf8,Fgfr3candFgfr4mRNA levels in oocytes, and granulosa and theca cells.Fgf8expression was detected in oocytes and in granulosa and theca cells; this expression pattern differs from that reported in rodents. Granulosa and theca cells, but not oocytes, expressedFgfr3c, and expression in granulosa cells increased significantly with follicle estradiol content, a major indicator of follicle health.Fgfr4expression was restricted to theca cells in the follicle, and decreased significantly with increasing follicle size. To investigate the potential regulation ofFgfr3cexpression in the bovine granulosa, cells were cultured in serum-free medium with FSH or IGF-I; gene expression was upregulated by FSH but not by IGF-I. The FSH-responsive and developmentally regulated patterns ofFgfr3cmRNA expression suggest that this receptor is a potential mediator of paracrine signaling to granulosa cells during antral follicle growth in cattle.


Sign in / Sign up

Export Citation Format

Share Document