scholarly journals Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells

Reproduction ◽  
2015 ◽  
Vol 150 (3) ◽  
pp. R77-R91 ◽  
Author(s):  
Yen-Tzu Tseng ◽  
Hung-Fu Liao ◽  
Chih-Yun Yu ◽  
Chu-Fan Mo ◽  
Shau-Ping Lin

Appropriate regulation of epigenome within cells is crucial for the determination of cell fate and contributes to the lifelong maintenance of tissue homeostasis. Epigenomic re-establishment during embryonic prospermatogonia development and fine-tune of the epigenetic landscape in postnatal spermatogonial stem cells (SSCs) are two key processes required for functional male germ cell formation. Repression of re-activated transposons and male germline-specific epigenome establishment occur in prospermatogonia, whereas modulations of the epigenetic landscape is important for SSC self-renewal and differentiation to maintain the stem cell pool and support long-term sperm production. Here, we describe the impact of epigenome-related regulators and small non-coding RNAs as well as the influence of epigenome modifications that result from extrinsic signaling for controlling the decision between self-renewal, differentiation and survival in mouse prospermatogonia and SSCs. This article provides a review of epigenome-related molecules involved in cell fate determination in male germ cells and discusses the intriguing questions that arise from these studies.

Reproduction ◽  
2019 ◽  
Vol 158 (1) ◽  
pp. R15-R25 ◽  
Author(s):  
Fan Zhou ◽  
Wei Chen ◽  
Yiqun Jiang ◽  
Zuping He

Spermatogonial stem cells (SSCs) are one of the most significant stem cells with the potentials of self-renewal, differentiation, transdifferentiation and dedifferentiation, and thus, they have important applications in reproductive and regenerative medicine. They can transmit the genetic and epigenetic information across generations, which highlights the importance of the correct establishment and maintenance of epigenetic marks. Accurate transcriptional and post-transcriptional regulation is required to support the highly coordinated expression of specific genes for each step of spermatogenesis. Increasing evidence indicates that non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play essential roles in controlling gene expression and fate determination of male germ cells. These ncRNA molecules have distinct characteristics and biological functions, and they independently or cooperatively modulate the proliferation, apoptosis and differentiation of SSCs. In this review, we summarized the features, biological function and fate of mouse and human SSCs, and we compared the characteristics of lncRNAs and circRNAs. We also addressed the roles and mechanisms of lncRNAs and circRNAs in regulating mouse and human SSCs, which would add novel insights into the epigenetic mechanisms underlying mammalian spermatogenesis and provide new approaches to treat male infertility.


2020 ◽  
Vol 9 ◽  
pp. 1829
Author(s):  
Maryam Khanehzad ◽  
Farid Abolhasani ◽  
Gholamreza Hassanzadeh ◽  
Seyed Mehdi Nourashrafeddin ◽  
Azim Hedayatpour

Background: Spermatogonial stem cells (SSCs) are considered as special stem cells since they have the ability of self-renewal, differentiation, and transferring genetic information to the next generation. Also, they considered as vital players in initiating and preserving spermatogenesis. The fate decisions of SSCs are mediated by intrinsic and extrinsic factors, among which microRNAs (miRNAs) are one of the most essential factors in spermatogenesis among endogenous regulators. However, the mechanisms by which individual miRNAs regulate self-renewal and differentiation of SSCs are unclear. The present study aimed to evaluate the impact of miRNA-30 mimic on fate determinations of SSCs. Materials and Methods: The obtained SSCs from neonatal mice (3-6 days old) were purified by MACS and flow cytometry with a promyelocytic leukemia zinc-finger marker. Then, the cultured cells were transfected with miRNA- 30 mimic, and finally, the changes in expressing ID4 and c-kit proteins were assessed by western blot analysis. Results: According to flow cytometry findings, the percentage of SSC purity was about 98.32. The expression of ID4 protein and colonization increased significantly through the transfection of miRNA-30 mimic (P<0.05). Conclusion: The miRNA-30 controls spermatogonial stem cell self-renewal and differentiation, which may have significant implications for treating male infertility. [GMJ.2020;9:e1829]


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1272-1272 ◽  
Author(s):  
Safak Yalcin ◽  
Julia P. Luciano ◽  
Xin Zhang ◽  
Cecile Vercherat ◽  
Reshma Taneja ◽  
...  

Abstract FOXO transcription factors are required for hematopoietic stem cell self renewal. In this study, we demonstrate that Foxo3 plays a specific and essential function in the regulation of both hematopoietic stem and progenitor cell fate. Foxo3 null mice display a myeloproliferative syndrome characterized by splenomegaly, a major expansion of the myeloid compartment in the blood, bone marrow and spleen, cytokine hypersensitivity of progenitors in hematopoietic organs and associated with the repression of the B lymphoid compartment. In addition, loss of Foxo3 leads to significant defects in hematopoietic stem cell numbers and activity. In particular, the numbers of long-term culture initiating cells (LTC-IC) was significantly reduced and the ability to repopulate lethally irradiated mice was severely compromised in Foxo3-defcient mice. This effect was mediated at least partially by enhanced accumulation of reactive oxygen species (ROS) in Foxo3-deficient hematopoietic stem cells as demonstrated by reduced QRT-PCR expression of several anti-oxidant enzymes leading to accumulation of ROS, (as measured by chloromethyl,dichlorodihydrofluorescein diacetate assay) in Foxo3 null hematopoietic stem cells, and in vitro and in vivo rescue of the phenotype using ROS scavengers. Furthermore, we demonstrate that while ROS accumulation results in suppression of Foxo3 null hematopoietic stem cell compartment, it enhances the activity of multipotential cells. By measuring RNA versus DNA content, and BrdU uptake, we determined that Foxo3-deficient hematopoietic stem cells exit quiescence (G0) and are impaired in their cycling at the G2/M phase. In particular, we identified ROS activation of p19ARF/p53 pathway and ROS-independent modulation of ataxia telangiectasia mutated (ATM) gene and p16INK4a, as major contributors to the interference with Foxo3-deficient hematopoietic stem cell self renewal and cycling. Loss of ATM has been shown to lead to hematopoietic stem cell deficiency. Importantly, we show that ATM gene expression is significantly suppressed in Foxo3-deficient hematopoietic stem cells suggesting that ATM lies downstream of Foxo3. Retroviral expression of a constitutively active form of Foxo3 in Foxo3-deficient bone marrow mononuclear cells enhances significantly the ATM expression suggesting that Foxo3 regulate expression of ATM gene. These combined findings suggest that Foxo3 functions in a tumor suppressor network to protect hematopoietic stem cells against deleterious effects of oxidative damage, to maintain hematopoietic lineage fate determination and to restrict the activity of long term repopulating hematopoietic stem cells. These findings provide insights into the mechanisms underlying hematopoietic stem cell fate.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 796-796
Author(s):  
Hui Yu ◽  
Hongmei Shen ◽  
Xianmin Song ◽  
Paulina Huang ◽  
Tao Cheng

Abstract The G1-phase is a critical window during the cell cycle in which stem cell self-renewal may be balanced with differentiation and apoptosis. Increasing evidence suggests that the cyclin-dependent kinase inhibitors (CKIs) such as p21Cip1/Waf1, p27kip1, p16INK4A, and p18INK4C (p21, p27, p16 and p18 hereafter) are involved in stem cell self-renewal, as largely demonstrated in murine hematopoietic stem cells (HSCs). For example, we have recently demonstrated a significant increase of HSC self-renewal in the absence of p18 (Yuan et al, Nature Cell Biology 2004). But the actual roles of these CKIs in HSCs appear to be distinct as p21 and p18 have opposite effects (Yu H et al, ASH 2004) whereas p16 has a limited effect (Stepanova et al, Blood 2005) on HSC exhaustion after serial bone marrow transfer. Like p18, however, p27 was recently reported to also inhibit HSC self-renewal due to the fact that the competitive repopulating units (CRUs) were increased in p27−/− mouse bone marrow (Walkley et al, Nature Cell Biology 2005) in contrast to the results in a previous report (Cheng T et al, Nature Medicine 2000). To further gauge the impact of p18 versus p27 on the long-term repopulating ability (LTRA) of HSCs, we have generated different congenic strains (CD45.1 and CD45.2) of p18−/− or p27−/− mice in the C57BL/6 background, allowing us to compare them with the competitive repopulation model in the same genetic background. The direct comparison of LTRA between p18−/− and p27−/− HSCs was assessed with the competitive bone marrow transplantation assay in which equal numbers of p18−/− (CD45.2) and p27−/− cells (CD45.1) were co-transplanted. Interestingly, the p18−/− genotype gradually dominated the p27−/− genotype in multiple hematopoietic lineages and p18−/− HSCs showed 4-5 times more LTRA than p27−/− HSCs 12 months after cBMT. Further self-renewal potential of HSCs was examined with secondary transplantation in which primarily transplanted p18−/− or p27−/− cells were equally mixed with wild-type unmanipulated cells. Notably, while the p18−/− cells continued to outcompete the wild-type cells as we previously observed, the p27−/− cells did not behave so in the secondary recipients. Based on the flow cytometric measurement and bone marrow cellularity, we estimated that transplanted p18−/− HSCs (defined with the CD34−LKS immunophenotype) had undergone a 230-fold expansion, while transplanted p27−/− and wild-type HSCs had only achieved a 6.6- and 2.4-fold expansion in the secondary recipients respectively. We further calculated the yield of bone marrow nucleated cells (BMNCs) per HSC. There were approximately 44 x 103, 20.6 x 103, and 15 x 103 BMNCs generated per CD34−LKS cell in p18−/−, p27−/− and wild-type transplanted recipients respectively. Therefore, the dramatic expansion of p18−/− HSCs in the hosts was not accompanied by decreased function per stem cell. Our current study demonstrates that hematopoietic engraftment in the absence of p18 is more advantageous than that in the absence of p27, perhaps due to a more specific role of p18 on self-renewal of the long-term repopulating HSCs.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 732-732 ◽  
Author(s):  
Stephen Ting ◽  
Eric Deneault ◽  
Melanie Frechette ◽  
Jalila Chagraoui ◽  
Guy Sauvageau

Abstract The molecular details governing self-renewal in tissue stem cells of the invertebrate systems of Drosophila Melanogaster and C. Elegans have been instructive for equivalent tissues in vertebrates. In the aforementioned invertebrates, an integral group of genes involved in cell polarity seem able to intrinsically act as or affect cell fate determinants (CFDs) during the process of stem cell asymmetric cell division (ACD). On this premise, we focused on potential polarity genes that may act as CFD during HSC self-renewal. 72 CFD candidates were chosen from a literature review that addressed mechanisms of ACD. Gene expression profiles were performed on both highly purified Long Term Repopulating-HSC populations and primary Leukemia Stem Cells. A significant number of these candidates were highly and differentially expressed. The highest ranking 60% of candidates (42 of the initial 72 genes) was then chosen for a functional in vitro to in vivo over-expression screen. The underlying theory of this screen is based on the ability of Hoxb4-induced HSCs, as compared to control vector-induced HSCs, to expand during a short in vitro culture period, together with their ability to provide significant long-term reconstitution upon transplantation after this in vitro expansion. Therefore, a positive candidate would be one that has a Hoxb4-like expansion effect on HSCs. In brief, using a 96 well plate format, 1500 CD150+48-Lin-Ly5.1+ donor derived HSCs were infected independently with each candidate, together with negative (vector alone) and positive (Hoxb4 and Nup98-Hoxa10 fusion) controls, for a total of 12 days and equal proportions of HSCs were transplanted after 5 and 12 days of in vitro culture into recipient Ly5.2+ mice. The read out measurement was donor Ly5.1+ peripheral blood reconstitution performed at monthly intervals for 5 months. At day 5 transplantations, 12 of the 42 genes had donor reconstitution above the empty vector control at 16 weeks. Of these 12 genes, only 4 retained positive long-term transplant donor reconstitution after the extra week of infection to 12 days. These 4 genes were: Ap2a2, Gpsm2, Tmod1 and Kif3a. Of these, the first 2 genes are robust candidates, having been replicated in 4 independent experiments. Interestingly, both these CFD candidates, Ap2a2 (as part of the endocytic machinery that interacts with membrane receptors) and Gpsm2 (as a G-protein signaling modulator that also influences mitotic spindle orientation) potentially provide mechanisms that allow the HSC to communicate with the niche. Ap2a2 induced HSCs in particular are able to reconstitute to levels beyond and equivalent to Hoxb4 and Nup98-HoxA10-induction, respectively. Oligoclonality (ruling out insertional mutagenesis) and multipotency from donor-derived Ly5-1+ HSCs in recipients at 20 plus weeks post-transplantation has also been performed. Endogenous Ap2a2 is localized predominantly asymmetrically in purified LTR-HSCs, as opposed to a predominant symmetrical distribution in E14 fetal liver HSCs. Initial live cell microscopy of LTR-HSCs infected with Ap2a2 fluorescent fusion proteins confirms the asymmetrical distribution, and further mechanistic insights should follow with prolonged video microscopy.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2578-2578
Author(s):  
Fabian Lang ◽  
Susanne Badura ◽  
Martin Ruthardt ◽  
Michael A. Rieger ◽  
Oliver G. Ottmann

Abstract Abstract 2578 The Hedgehog (Hh) pathway plays a functional role in embryonic development and promotes tumorigenesis in a diversity of cancers. Constitutive activation of Smo, an essential component of the Hh pathway, augments stem cell number and accelerates disease in BCR-ABL positive CML, whereas loss of Smo depletes CML stem cells by inhibition of self-renewal. Phase I clinical trials using Hh inhibitors have started in BCR-ABL pos ALL and CML. The role of Hh signalling on stem cell behaviour in BCR-ABL neg ALL has not yet been examined. The phenotype of leukemic stem cells (LSCs) and the target cells for transformation in ALL are controversial, but only a small subpopulation of cells seem to act as LSCs. These cells may be the most relevant targets for treatment regimens for compounds that interfere with self-renewal programs and that provide promising therapeutic options for improving treatment of adult ALL. Aims of the study are characterization of different genetically and phenotipically defined ALLs, using our twelve patient derived long term cultures (LTCs), according to their biologic behaviour including leukemia initiating capacity, assessment of the impact of Hh inhibition on proliferation, apoptosis and clonogenic capacity and LSC function and dissection of the role of different components of the Hh signalling pathway on cell fate decisions by means of single cell video microscopy. These studies are anticipated to yield information on the therapeutic potential of modulation of Hh signalling in both BCR-ABL pos and neg ALL and the potential value of combination therapy. As models of BCR-ABL pos and neg leukemias we used serum-, cytokine- and stroma-free long term cultures of primary ALL blasts. Clonogenic growth of ALL cells was assessed in semi solid methylcellulose based media. Cell subpopulations were isolated on the basis of CD20, CD34 and CD38 expression via FACS based sorting (BD FACS Aria). Cell proliferation was measured using XTT assays and Annexin V and 7 AAD FACS staining were used to quantitate apoptosis. Quantitative RT PCR of Hh signalling pathway components using predeveloped Taqman assays (Applied). Single cell video tracking to determine cell fate decisions was performed as previously described (Rieger et all, Science 2009), adapted to facilitate the analysis of ALL LTCs. Two novel Smo inhibitors being currently in clinical testing, LDE225 and BMS833923 were kindly provided by Novartis and Bristol Myers Squibb. Results: The expression pattern of surface markers varied profoundly between the different LTCs studied. In preliminary experiments designed to identify functionally distinct subpopulations of long term cultured ALL blasts, cells were isolated to greater than 90% purity based on CD20, CD34 and CD38 expression. With the exception of CD34 positive cells, the surface marker distribution rapidly reverted to an identical pattern as determined prior to culture in three cell lines studied. In two ALL LTCs, CD34 expression was associated with slower proliferation. All three cell lines displayed clonogenic capacity ranging from 0,25% to 8% and are able to engraft in NSG mice. Analysis of Hh Signalling in ALL LTCs by RT PCR demonstrated expression of Shh, Ptch, Smo, and the transcription factors Gli 1 + 3, indicating active Hh signalling in ALL. Interestingly the transcription factor Gli 2 was not expressed, the functional relevance of which remains as yet unclear. The Hh inhibitors LDE225 and BMS833923 (0,01μM to 5μM) showed no dose dependent effect on inhibition of proliferation or induction of apoptosis in ALL LTCs. In conclusion we found evidence of Hh activation in both BCR-ABL pos and neg LTC ALL cells. No impact of Smo inhibition on proliferation and apoptosis was observed in response to the Smo inhibitors LDE225 and BMS833923, consistent with the hypothesis that Hh signalling in these cells may affect primarily self-renewal mechanisms. Single cell imaging of ALL LTCs has been successfully established for up to nine days of culture and will be applied to the testing of Hh modulation on cell fate decisions. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Laura García-Prat ◽  
Kerstin B. Kaufmann ◽  
Florin Schneiter ◽  
Veronique Voisin ◽  
Alex Murison ◽  
...  

SummaryIt is critical to understand how quiescent long-term hematopoietic stem cells (LT-HSC) sense demand from daily and stress-mediated cues and transition into bioenergetically active progeny to differentiate and meet these cellular needs. Here, we show that lysosomes, which are sophisticated nutrient sensing and signaling centers, are dichotomously regulated by the Transcription Factor EB (TFEB) and MYC to balance catabolic and anabolic processes required for activating LT-HSC and guiding their lineage fate. TFEB-mediated induction of the endolysosomal pathway causes membrane receptor degradation, limiting LT-HSC metabolic and mitogenic activation, which promotes quiescence, self-renewal and governs erythroid-myeloid commitment. By contrast, MYC engages biosynthetic processes while repressing lysosomal catabolism to drive LT-HSC activation. Collectively, our study identifies lysosomes as a central regulatory hub for proper and coordinated stem cell fate determination.


Blood ◽  
2010 ◽  
Vol 116 (16) ◽  
pp. 2932-2941 ◽  
Author(s):  
Zhuo Sun ◽  
Yuemei Zhang ◽  
Keith R. Brunt ◽  
Jun Wu ◽  
Shu-Hong Li ◽  
...  

Abstract Stem cells exhibit long-term self-renewal by asymmetric division and multipotent differentiation. During embryonic development, cell fate is determined with predictable orientation, differentiation, and partitioning to form the organism. This includes the formation of a hemangioblast from which 2 derivative cell clusters commit to either a hematopoietic or an endothelial lineage. Frequently, it is not clear whether tissue resident stem cells in the adult originate from the bone marrow. Here, we show that blast colony-forming cells exhibiting bilineage (hematopoietic and vascular) potential and long-term self-renewal originate from the uterus in the mouse. This is the first in vitro and in vivo evidence of an adult hemangioblast retained from development in the uterus. Our findings offer new understanding of uterine cell renewal and turnover and may provide insights and opportunities for the study of stem cell maintenance.


Sign in / Sign up

Export Citation Format

Share Document