scholarly journals The excitatory effects of microRNA- 30 in the self-renewal and differentiation process of neonatal mouse spermatogonial stem cells

2020 ◽  
Vol 9 ◽  
pp. 1829
Author(s):  
Maryam Khanehzad ◽  
Farid Abolhasani ◽  
Gholamreza Hassanzadeh ◽  
Seyed Mehdi Nourashrafeddin ◽  
Azim Hedayatpour

Background: Spermatogonial stem cells (SSCs) are considered as special stem cells since they have the ability of self-renewal, differentiation, and transferring genetic information to the next generation. Also, they considered as vital players in initiating and preserving spermatogenesis. The fate decisions of SSCs are mediated by intrinsic and extrinsic factors, among which microRNAs (miRNAs) are one of the most essential factors in spermatogenesis among endogenous regulators. However, the mechanisms by which individual miRNAs regulate self-renewal and differentiation of SSCs are unclear. The present study aimed to evaluate the impact of miRNA-30 mimic on fate determinations of SSCs. Materials and Methods: The obtained SSCs from neonatal mice (3-6 days old) were purified by MACS and flow cytometry with a promyelocytic leukemia zinc-finger marker. Then, the cultured cells were transfected with miRNA- 30 mimic, and finally, the changes in expressing ID4 and c-kit proteins were assessed by western blot analysis. Results: According to flow cytometry findings, the percentage of SSC purity was about 98.32. The expression of ID4 protein and colonization increased significantly through the transfection of miRNA-30 mimic (P<0.05). Conclusion: The miRNA-30 controls spermatogonial stem cell self-renewal and differentiation, which may have significant implications for treating male infertility. [GMJ.2020;9:e1829]

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Maryam Khanehzad ◽  
Seyed Mehdi Nourashrafeddin ◽  
Farid Abolhassani ◽  
Shokoofeh Kazemzadeh ◽  
Soheila Madadi ◽  
...  

Abstract Background The importance of spermatogonial stem cells (SSCs) in spermatogenesis is crucial and intrinsic factors and extrinsic signals mediate fate decisions of SSCs. Among endogenous regulators, microRNAs (miRNAs) play critical role in spermatogenesis. However, the mechanisms which individual miRNAs regulate self- renewal and differentiation of SSCs are unknown. The aim of this study was to investigate effects of miRNA-30a-5p inhibitor on fate determinations of SSCs. Methods SSCs were isolated from testes of neonate mice (3–6 days old) and their purities were performed by flow cytometry with ID4 and Thy1 markers. Cultured cells were transfected with miRNA- 30a-5p inhibitor. Evaluation of the proliferation (GFRA1, PLZF and ID4) and differentiation (C-Kit & STRA8) markers of SSCs were accomplished by immunocytochemistry and western blot 48 h after transfection. Results Based on the results of flow cytometry with ID4 and Thy1 markers, percentage of purity of SSCs was about 84.3 and 97.4 % respectively. It was found that expression of differentiation markers after transfection was significantly higher in miRNA-30a- 5p inhibitor group compared to other groups. The results of proliferation markers evaluation also showed decrease of GFRA1, PLZF and ID4 protein in SSCs transfected with miRNA-30a-5p inhibitor compared to the other groups. Conclusions It can be concluded that inhibition of miRNA-30a-5p by overexpression of differentiation markers promotes differentiation of Spermatogonial Stem Cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Min Wang ◽  
Wene Zhao ◽  
Fuqiang Wang ◽  
Xiufeng Ling ◽  
Daozhen Chen ◽  
...  

Spermatogonial stem cells (SSCs) are exquisitely regulated to reach a balance between proliferation and differentiation in the niche of seminiferous epithelium. Several extrinsic factors such as GDNF are reported to switch the transition, activating various intrinsic signaling pathways. Transcriptomics analysis could provide a comprehensive landscape of gene expression and regulation. Here, we reanalyzed a previously published transcriptome of two cell types (standing for self-renewing and differentiating SSCs correspondingly). First, we proposed a new parameter, the expression index, to sort the genes considering both absolute and relative expression levels. Using a dynamic statistical model, we identified a list of 1119 candidate genes for SSC self-renewal with the best enrichment of canonical markers. Finally, based on interaction relations, we further optimized the list and constructed a refined network containing integrated information of interactions, expression alternations, biological functions, and disease associations. Further annotation of the 521 refined genes involved in the network revealed an enrichment of well-studied signaling pathways. We believe that the refined network could help us better understand the regulation of SSCs’ fates, as well as find novel regulators or targets for SSC self-renewal or preservation of male fertility.


Reproduction ◽  
2015 ◽  
Vol 150 (3) ◽  
pp. R77-R91 ◽  
Author(s):  
Yen-Tzu Tseng ◽  
Hung-Fu Liao ◽  
Chih-Yun Yu ◽  
Chu-Fan Mo ◽  
Shau-Ping Lin

Appropriate regulation of epigenome within cells is crucial for the determination of cell fate and contributes to the lifelong maintenance of tissue homeostasis. Epigenomic re-establishment during embryonic prospermatogonia development and fine-tune of the epigenetic landscape in postnatal spermatogonial stem cells (SSCs) are two key processes required for functional male germ cell formation. Repression of re-activated transposons and male germline-specific epigenome establishment occur in prospermatogonia, whereas modulations of the epigenetic landscape is important for SSC self-renewal and differentiation to maintain the stem cell pool and support long-term sperm production. Here, we describe the impact of epigenome-related regulators and small non-coding RNAs as well as the influence of epigenome modifications that result from extrinsic signaling for controlling the decision between self-renewal, differentiation and survival in mouse prospermatogonia and SSCs. This article provides a review of epigenome-related molecules involved in cell fate determination in male germ cells and discusses the intriguing questions that arise from these studies.


Reproduction ◽  
2008 ◽  
Vol 136 (5) ◽  
pp. 543-557 ◽  
Author(s):  
Pedro M Aponte ◽  
Takeshi Soda ◽  
Katja J Teerds ◽  
S Canan Mizrak ◽  
Henk J G van de Kant ◽  
...  

The access to sufficient numbers of spermatogonial stem cells (SSCs) is a prerequisite for the study of their regulation and further biomanipulation. A specialized medium and several growth factors were tested to study thein vitrobehavior of bovine type A spermatogonia, a cell population that includes the SSCs and can be specifically stained for the lectin Dolichos biflorus agglutinin. During short-term culture (2 weeks), colonies appeared, the morphology of which varied with the specific growth factor(s) added. Whenever the stem cell medium was used, round structures reminiscent of sectioned seminiferous tubules appeared in the core of the colonies. Remarkably, these round structures always contained type A spermatogonia. When leukemia inhibitory factor (LIF), epidermal growth factor (EGF), or fibroblast growth factor 2 (FGF2) were added, specific effects on the numbers and arrangement of somatic cells were observed. However, the number of type A spermatogonia was significantly higher in cultures to which glial cell line-derived neurotrophic factor (GDNF) was added and highest when GDNF, LIF, EGF, and FGF2 were all present. The latter suggests that a proper stimulation of the somatic cells is necessary for optimal stimulation of the germ cells in culture. Somatic cells present in the colonies included Sertoli cells, peritubular myoid cells, and a few Leydig cells. A transplantation experiment, using nude mice, showed the presence of SSCs among the cultured cells and in addition strongly suggested a more than 10 000-fold increase in the number of SSCs after 30 days of culture. These results demonstrate that bovine SSC self-renew in our specialized bovine culture system and that this system can be used for the propagation of these cells.


2021 ◽  
Author(s):  
Wei Hu ◽  
Jiawu Liang ◽  
Song Liao ◽  
Zhidong Zhao ◽  
Yuxing Wang ◽  
...  

Abstract Background Ionizing radiation poses a challenge to the healing of bone defects. Radiation therapy and accidental exposure to gamma-ray (γ-ray) radiation inhibit bone formation and increase the risk of fractures. Cortical bone-derived stem cells (CBSCs) are essential for osteogenic lineages, bone maintenance, and repair. This study aimed to investigate the effects of melatonin on postradiation CBSCs and bone defects. Methods CBSCs were extracted from C57/BL6 mice and were identified by flow cytometry. The effects of exogenous melatonin on the self-renewal and osteogenic capacity of postradiation CBSCs were detected in vitro. The underlying mechanisms in terms of genomic stability, apoptosis and oxidative stress-related signaling were further analyzed by western blotting, flow cytometry and immunofluorescence. Finally, the effects of melatonin on healing in postradiation bone defects were evaluated in vivo by micro-CT and immunohistochemical analysis. Results The radiation-induced reduced self-renewal and osteogenic capacity were partially reversed in postradiation CBSCs treated with melatonin. Melatonin maintained the genomic stability and apoptosis of postradiation CBSCs, and intracellular oxidative stress was decreased significantly while antioxidant-related enzymes were enhanced. Western blotting verified the anti-inflammatory effect of melatonin by downregulating the levels of IL-6 and TNF-α via extracellular regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) signaling, distinct from its antioxidant effect via NRF2 signaling. In vivo experiments demonstrated that the newly formed bone in the melatonin plus Matrigel group had higher trabecular bone volume per tissue volume (BV/TV) and bone mineral density (BMD) values, and lower levels of IL-6 and TNF-α than those in the irradiation and the Matrigel groups. Conclusions This study suggested the potential of melatonin to protect CBSCs against γ-ray radiation and to assist the healing of postradiation bone defects.


2018 ◽  
Vol 27 (23) ◽  
pp. 1658-1670
Author(s):  
Yang Zhao ◽  
Zhuo Yang ◽  
Yuan Wang ◽  
Yubing Luo ◽  
Fan Da ◽  
...  

2017 ◽  
Vol 197 (4S) ◽  
Author(s):  
Jingtao Guo ◽  
Edward J. Grow ◽  
Chongil Yi ◽  
Douglas T. Carrell ◽  
James M. Hotaling ◽  
...  

2019 ◽  
Vol 102 (1) ◽  
pp. 220-232 ◽  
Author(s):  
Hiroko Morimoto ◽  
Mito Kanatsu-Shinohara ◽  
Kyle E Orwig ◽  
Takashi Shinohara

Abstract Spermatogonial stem cells (SSCs) undergo continuous self-renewal division in response to self-renewal factors. The present study identified ephrin type-A receptor 2 (EPHA2) on mouse SSCs and showed that supplementation of glial cell-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), which are both SSC self-renewal factors, induced EPHA2 expression in cultured SSCs. Spermatogonial transplantation combined with magnetic-activated cell sorting or fluorescence-activated cell sorting also revealed that EPHA2 was expressed in SSCs. Additionally, ret proto-oncogene (RET) phosphorylation levels decreased following the knockdown (KD) of Epha2 expression via short hairpin ribonucleic acid (RNA). Although the present immunoprecipitation experiments did not reveal an association between RET with EPHA2, RET interacted with FGFR2. The Epha2 KD decreased the proliferation of cultured SSCs and inhibited the binding of cultured SSCs to laminin-coated plates. The Epha2 KD also significantly reduced the colonization of testis cells by spermatogonial transplantation. EPHA2 was also expressed in human GDNF family receptor alpha 1-positive spermatogonia. The present results indicate that SSCs express EPHA2 and suggest that it is a critical modifier of self-renewal signals in SSCs.


Sign in / Sign up

Export Citation Format

Share Document