scholarly journals Maternal metabolic stress may affect oviduct gatekeeper function

Reproduction ◽  
2017 ◽  
Vol 153 (6) ◽  
pp. 759-773 ◽  
Author(s):  
L Jordaens ◽  
V Van Hoeck ◽  
V Maillo ◽  
A Gutierrez-Adan ◽  
W F A Marei ◽  
...  

We hypothesized that elevated non-esterified fatty acids (NEFA) modify in vitro bovine oviduct epithelial cell (BOEC) metabolism and barrier function. Hereto, BOECs were studied in a polarized system with 24-h treatments at Day 9: (1) control (0 µM NEFA + 0% EtOH), (2) solvent control (0 µM NEFA + 0.45% EtOH), (3) basal NEFA (720 µM NEFA + 0.45% EtOH in the basal compartment) and (4) apical NEFA (720 µM NEFA + 0.45% EtOH in the apical compartment). FITC-albumin was used for monolayer permeability assessment and related to transepithelial electric resistance (TER). Fatty acid (FA), glucose, lactate and pyruvate concentrations were measured in spent medium. Intracellular lipid droplets (LD) and FA uptake were studied using Bodipy 493/503 and immunolabelling of FA transporters (FAT/CD36, FABP3 and CAV1). BOEC-mRNA was retrieved for qRT-PCR. Results revealed that apical NEFA reduced relative TER increase (46.85%) during treatment and increased FITC–albumin flux (27.59%) compared to other treatments. In basal NEFA, FAs were transferred to the apical compartment as free FAs: mostly palmitic and oleic acid increased respectively 56.0 and 33.5% of initial FA concentrations. Apical NEFA allowed no FA transfer, but induced LD accumulation and upregulated FA transporter expression (↑CD36, ↑FABP3 and ↑CAV1). Gene expression in apical NEFA indicated increased anti-apoptotic (↑BCL2) and anti-oxidative (↑SOD1) capacity, upregulated lipid metabolism (↑CPT1, ↑ACSL1 and ↓ACACA) and FA uptake (↑CAV1). All treatments had similar carbohydrate metabolism and oviduct function-specific gene expression (OVGP1, ESR1 and FOXJ1). Overall, elevated NEFAs affected BOEC metabolism and barrier function differently depending on NEFA exposure side. Data substantiate the concept of the oviduct as a gatekeeper that may actively alter early embryonic developmental conditions.

2004 ◽  
Vol 16 (2) ◽  
pp. 87 ◽  
Author(s):  
Le Ann Blomberg ◽  
Kurt A. Zuelke

Functional genomics provides a powerful means for delving into the molecular mechanisms involved in pre-implantation development of porcine embryos. High rates of embryonic mortality (30%), following either natural mating or artificial insemination, emphasise the need to improve the efficiency of reproduction in the pig. The poor success rate of live offspring from in vitro-manipulated pig embryos also hampers efforts to generate transgenic animals for biotechnology applications. Previous analysis of differential gene expression has demonstrated stage-specific gene expression for in vivo-derived embryos and altered gene expression for in vitro-derived embryos. However, the methods used to date examine relatively few genes simultaneously and, thus, provide an incomplete glimpse of the physiological role of these genes during embryogenesis. The present review will focus on two aspects of applying functional genomics research strategies for analysing the expression of genes during elongation of pig embryos between gestational day (D) 11 and D12. First, we compare and contrast current methodologies that are being used for gene discovery and expression analysis during pig embryo development. Second, we establish a paradigm for applying serial analysis of gene expression as a functional genomics tool to obtain preliminary information essential for discovering the physiological mechanisms by which distinct embryonic phenotypes are derived.


2008 ◽  
Vol 22 (12) ◽  
pp. 2677-2688 ◽  
Author(s):  
Paul G. Tiffen ◽  
Nader Omidvar ◽  
Nuria Marquez-Almuina ◽  
Dawn Croston ◽  
Christine J. Watson ◽  
...  

Abstract Recent studies in breast cancer cell lines have shown that oncostatin M (OSM) not only inhibits proliferation but also promotes cell detachment and enhances cell motility. In this study, we have looked at the role of OSM signaling in nontransformed mouse mammary epithelial cells in vitro using the KIM-2 mammary epithelial cell line and in vivo using OSM receptor (OSMR)-deficient mice. OSM and its receptor were up-regulated approximately 2 d after the onset of postlactational mammary regression, in response to leukemia inhibitory factor (LIF)-induced signal transducer and activator of transcription-3 (STAT3). This resulted in sustained STAT3 activity, increased epithelial apoptosis, and enhanced clearance of epithelial structures during the remodeling phase of mammary involution. Concurrently, OSM signaling precipitated the dephosphorylation of STAT5 and repressed expression of the milk protein genes β-casein and whey acidic protein (WAP). Similarly, during pregnancy, OSM signaling suppressed β-casein and WAP gene expression. In vitro, OSM but not LIF persistently down-regulated phosphorylated (p)-STAT5, even in the continued presence of prolactin. OSM also promoted the expression of metalloproteinases MMP3, MMP12, and MMP14, which, in vitro, were responsible for OSM-specific apoptosis. Thus, the sequential activation of IL-6-related cytokines during mammary involution culminates in an OSM-dependent repression of epithelial-specific gene expression and the potentiation of epithelial cell extinction mediated, at least in part, by the reciprocal regulation of p-STAT5 and p-STAT3.


2017 ◽  
Author(s):  
Diane Maitre ◽  
Oliver M. Selmoni ◽  
Anshu Uppal ◽  
Lucas Marques da Cunha ◽  
Laetitia G. E. Wilkins ◽  
...  

AbstractFish can be threatened by distorted sex ratios that arise during sex differentiation. It is therefore important to understand sex determination and differentiation, especially in river-dwelling fish that are often exposed to environmental factors that may interfere with sex differentiation. However, sex differentiation is not sufficiently understood in keystone taxa such as the Thymallinae, one of the three salmonid subfamilies. Here we study a wild grayling (Thymallus thymallus) population that suffers from distorted sex ratios. We found sex determination in the wild and in captivity to be genetic and linked to the sdY locus. We therefore studied sex-specific gene expression in embryos and early larvae that were bred and raised under different experimental conditions, and we studied gonadal morphology in five monthly samples taken after hatching. Significant sex-specific changes in gene expression (affecting about 25,000 genes) started around hatching. Gonads were still undifferentiated three weeks after hatching, but about half of the fish showed immature testes around seven weeks after hatching. Over the next few months, this phenotype was mostly replaced by the “testis-to-ovary” or “ovaries” phenotypes. The gonads of the remaining fish, i.e. approximately half of the fish in each sampling period, remained undifferentiated until six months after fertilization. Genetic sexing of the last two samples revealed that fish with undifferentiated gonads were all males, who, by that time, were on average larger than the genetic females (verified in 8-months old juveniles raised in another experiment). Only 12% of the genetic males showed testicular tissue six months after fertilization. We conclude that sex differentiation starts around hatching, goes through an all-male stage for both sexes (which represents a rare case of “undifferentiated” gonochoristic species that usually go through an all-female stage), and is delayed in males who, instead of developing their gonads, grow faster than females during these juvenile stages.Author contributionMRR and CW initiated the project. DM, OS, AU, LMC, LW, and CW sampled the adult fish, did the experimental in vitro fertilizations, and prepared the embryos for experimental rearing in the laboratory. All further manipulations on the embryos and the larvae were done by DM, OS, AU, LMC, and LW. The RNA-seq data were analyzed by OS, JR, and MRR, the histological analyses were done by DM, supervised by SK, and the molecular genetic sexing was performed by DM, OS, AU, and KBM. DM, OS, and CW performed the remaining statistical analyses and wrote the first version of the manuscript that was then critically revised by all other authors.


2000 ◽  
Vol 352 (3) ◽  
pp. 667-673 ◽  
Author(s):  
Bandi SRIRAM ◽  
Akhil C. BANERJEA

Selective inactivation of a target gene by antisense mechanisms is an important biological tool to delineate specific functions of the gene product. Approaches mediated by ribozymes and RNA-cleaving DNA enzymes (DNA enzymes) are more attractive because of their ability to catalytically cleave the target RNA. DNA enzymes have recently gained a lot of importance because they are short DNA molecules with simple structures that are expected to be stable to the nucleases present inside a mammalian cell. We have designed a strategy to identify accessible cleavage sites in HIV-1 gag RNA from a pool of random DNA enzymes, and for isolation of DNA enzymes. A pool of random sequences (all 29 nucleotides long) that contained the earlier-identified 10Ő23 catalytic motif were tested for their ability to cleave the target RNA. When the pool of random DNA enzymes was targeted to cleave between any A and U nucleotides, DNA enzyme 1836 was identified. Although several DNA enzymes were identified using a pool of DNA enzymes that was completely randomized with respect to its substrate-binding properties, DNA enzyme-1810 was selected for further characterization. Both DNA enzymes showed target-specific cleavage activities in the presence of Mg2+ only. When introduced into a mammalian cell, they showed interference with HIV-1-specific gene expression. This strategy could be applied for the selection of desired target sites in any target RNA.


2008 ◽  
Vol 105 (46) ◽  
pp. 18012-18017 ◽  
Author(s):  
Jun Kohyama ◽  
Takuro Kojima ◽  
Eriko Takatsuka ◽  
Toru Yamashita ◽  
Jun Namiki ◽  
...  

Neural stem/progenitor cells (NSCs/NPCs) give rise to neurons, astrocytes, and oligodendrocytes. It has become apparent that intracellular epigenetic modification including DNA methylation, in concert with extracellular cues such as cytokine signaling, is deeply involved in fate specification of NSCs/NPCs by defining cell-type specific gene expression. However, it is still unclear how differentiated neural cells retain their specific attributes by repressing cellular properties characteristic of other lineages. In previous work we have shown that methyl-CpG binding protein transcriptional repressors (MBDs), which are expressed predominantly in neurons in the central nervous system, inhibit astrocyte-specific gene expression by binding to highly methylated regions of their target genes. Here we report that oligodendrocytes, which do not express MBDs, can transdifferentiate into astrocytes both in vitro (cytokine stimulation) and in vivo (ischemic injury) through the activation of the JAK/STAT signaling pathway. These findings suggest that differentiation plasticity in neural cells is regulated by cell-intrinsic epigenetic mechanisms in collaboration with ambient cell-extrinsic cues.


2004 ◽  
Vol 23 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Danijela Drakulic ◽  
Milena Stevanovic ◽  
Gordana Nikcevic

RNA-RNA in situ hybridization is a reliable method for studying tissue and cell specific gene expression, which enables visualization of labeled antisense RNA probe hybridized to specific mRNA. In this study we employed non-radioactive RNA-RNA in situ hybridization using biotin- or digoxigenin-labeled RNA probes in order to detect SOX gene expression in carcinoma cell lines. By this approach we confirmed results obtained by Northern blot analysis, where the presence of SOX2 mRNA in NT2/D1 and SOX14 mRNA in HepG2 cells has been established. Our aim was to set up RNA-RNA in situ hybridization method in in vitro cultured cells in order to perform further analyses of SOX gene expression on various normal and cancer tissues.


2019 ◽  
Author(s):  
Gaëtan Juban ◽  
Nathalie Sakakini ◽  
Hedia Chagraoui ◽  
Qian Cheng ◽  
Kelly Soady ◽  
...  

AbstractThe megakaryocyte/erythroid Transient Myeloproliferative Disorder (TMD) in newborns with Down Syndrome (DS) occurs when N-terminal truncating mutations of the hemopoietic transcription factor GATA1, that produce GATA1short protein (GATA1s), are acquired early in development. Prior work has shown that murine GATA1s, by itself, causes a transient yolk sac myeloproliferative disorder. However, it is unclear where in the hemopoietic cellular hierarchy GATA1s exerts its effects to produce this myeloproliferative state. Here, through a detailed examination of hemopoiesis from murine GATA1s ES cells and GATA1s embryos we define defects in erythroid and megakaryocytic differentiation that occur relatively in hemopoiesis. GATA1s causes an arrest late in erythroid differentiationin vivo, and even more profoundly in ES-cell derived cultures, with a marked reduction of Ter-119 cells and reduced erythroid gene expression. In megakaryopoiesis, GATA1s causes a differentiation delay at a specific stage, with accumulation of immature, kit-expressing CD41himegakaryocytic cells. In this specific megakaryocytic compartment, there are increased numbers of GATA1s cells in S-phase of cell cycle and reduced number of apoptotic cells compared to GATA1 cells in the same cell compartment. There is also a delay in maturation of these immature GATA1s megakaryocytic lineage cells compared to GATA1 cells at the same stage of differentiation. Finally, even when GATA1s megakaryocytic cells mature, they mature aberrantly with altered megakaryocyte-specific gene expression and activity of the mature megakaryocyte enzyme, acetylcholinesterase. These studies pinpoint the hemopoietic compartment where GATA1s megakaryocyte myeloproliferation occurs, defining where molecular studies should now be focussed to understand the oncogenic action of GATA1s.Scientific CategoryHaematopoiesis and Stem CellsKey PointsGATA1s-induced stage-specific differentiation delay increases immature megakaryocytesin vivoandin vitro, during development.Differentiation delay is associated with increased numbers of cells in S-phase and reduced apoptosis.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi265-vi265
Author(s):  
Daniel Zhang ◽  
Fadi Jacob ◽  
Ryan Salinas ◽  
Phuong Nguyen ◽  
Guo-li Ming ◽  
...  

Abstract Glioblastoma exhibits enormous genetic, transcriptional, and cellular heterogeneity at the macroscopic level across regions of the tumor as well as at the microscopic level between neighboring cells, all of which present significant challenges towards creating a definitive treatment for this devastating disease. We have developed a method of generating glioblastoma organoids (GBOs) from fresh tissue obtained directly from surgical resection and maintaining them in a defined medium without bFGF/EGF. Whole exome sequencing revealed that GBOs maintain the genomic landscape of their parent tumors. Somatic and copy number variants are present in the GBOs at similar allele frequencies or copy ratios as in the parent tumor, suggesting that the relative proportions of clonal populations are largely maintained in the organoids. Bulk transcriptomic analysis demonstrated strong gene expression correlations between the parent tumor and corresponding GBOs through 12 weeks of culture. Some tumors were sampled at multiple different anatomic regions, and the corresponding GBOs maintained region-specific gene expression signatures and genomic variants. EGFRvIII, a tumor-specific variant targeted in a number of emerging therapies, also remains present in the GBOs at similar transcript frequencies, reflecting the native heterogeneity of the parent tumor. Finally, we used single cell transcriptomics to examine cellular heterogeneity and find that GBOs contain many different cell types that exhibit similar gene expression profiles as the matching cell type in the corresponding parent tumor. Notably, these GBOs retain neoplastic as well as non-neoplastic cells, such as tumor associated macrophages / microglia, T-cells, endothelial cells, stromal cells, and oligodendrocytes. These GBOs preserve complex tumor heterogeneity an in vitro environment, creating opportunities for extended manipulation, characterization, and functional study for mechanistic investigation and therapeutic testing.


Development ◽  
1997 ◽  
Vol 124 (2) ◽  
pp. 279-287 ◽  
Author(s):  
S.A. Duncan ◽  
A. Nagy ◽  
W. Chan

Immediately prior to gastrulation the murine embryo consists of an outer layer of visceral endoderm (VE) and an inner layer of ectoderm. Differentiation and migration of the ectoderm then occurs to produce the three germ layers (ectoderm, embryonic endoderm and mesoderm) from which the fetus is derived. An indication that the VE might have a critical role in this process emerged from studies of Hnf-4(−/−) mouse embryos which fail to undergo normal gastrulation. Since expression of the transcription factor HNF-4 is restricted to the VE during this phase of development, we proposed that HNF-4-regulated gene expression in the VE creates an environment capable of supporting gastrulation. To address this directly we have exploited the versatility of embryonic stem (ES) cells which are amenable to genetic manipulation and can be induced to form VE in vitro. Moreover, embryos derived solely from ES cells can be generated by aggregation with tetraploid morulae. Using Hnf-4(−/−) ES cells we demonstrate that HNF-4 is a key regulator of tissue-specific gene expression in the VE, required for normal expression of secreted factors including alphafetoprotein, apolipoproteins, transthyretin, retinol binding protein, and transferrin. Furthermore, specific complementation of Hnf-4(−/−) embryos with tetraploid-derived Hnf-4(+/+) VE rescues their early developmental arrest, showing conclusively that a functional VE is mandatory for gastrulation.


Sign in / Sign up

Export Citation Format

Share Document