scholarly journals Absence of mDazl produces a final block on germ cell development at meiosis

Reproduction ◽  
2003 ◽  
pp. 589-597 ◽  
Author(s):  
PT Saunders ◽  
JM Turner ◽  
M Ruggiu ◽  
M Taggart ◽  
PS Burgoyne ◽  
...  

The autosomal gene DAZL is a member of a family of genes (DAZL, DAZ, BOULE), all of which contain a consensus RNA binding domain and are expressed in germ cells. Adult male and female mice null for Dazl lack gametes. In order to define more precisely the developmental stages in germ cells that require Dazl expression, the patterns of germ cell loss in immature male and female wild-type (+/+, WT) and Dazl -/- (DazlKO) mice were analysed. In females, loss of germ cells occurred during fetal life and was coincident with progression of cells through meiotic prophase. In males, testes were recovered from WT and DazlKO males obtained before and during the first wave of spermatogenesis (days 2-19). Mitotically active germ cells were present up to and including day 19. Functional differentiation of spermatogonia associated with detection of c-kit positive cells did not depend upon expression of Dazl. RBMY-positive cells (A, intermediate, B spermatogonia, zygotene and preleptotene spermatocytes) were reduced in DazlKO compared with WT testes. Staining of cell squashes from day 19 testes with anti-gamma-H2AX and anti-SCP3 antibodies showed that germ cells from DazlKO males were unable to progress beyond the leptotene stage of meiotic prophase I. It was concluded that in the absence of Dazl, germ cells can complete mitosis, and embark on functional differentiation but that, in both sexes, progression through meiotic prophase requires this RNA binding protein.

Author(s):  
Victor A Ruthig ◽  
Tetsuhiro Yokonishi ◽  
Matthew B Friedersdorf ◽  
Sofia Batchvarova ◽  
Josiah Hardy ◽  
...  

Abstract In vertebrates, the RNA binding protein (RBP) Dead End 1 (DND1) is essential for primordial germ cell (PGC) survival and maintenance of cell identity. In multiple species, Dnd1 loss or mutation leads to severe PGC loss soon after specification or, in some species, germ cell transformation to somatic lineages. Our investigations into the role of DND1 in PGC specification and differentiation have been limited by the absence of an available antibody. To address this problem, we used CRISPR/Cas9 gene editing to establish a transgenic mouse line carrying a DND1GFP fusion allele. We present imaging analysis of DND1GFP expression showing that DND1GFP expression is heterogeneous among male germ cells (MGCs) and female germ cells (FGCs). DND1GFP was detected in MGCs throughout fetal life but lost from FGCs at meiotic entry. In postnatal and adult testes, DND1GFP expression correlated with classic markers for the pre-meiotic spermatogonial population. Utilizing the GFP-tag for RNA immunoprecipitation (RIP) analysis in MGCs validated this transgenic as a tool for identifying in vivo transcript targets of DND1. The DND1GFP mouse line is a novel tool for isolation and analysis of embryonic and fetal germ cells, and the spermatogonial population of the postnatal and adult testis.


Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1867-1873 ◽  
Author(s):  
M. Poirie ◽  
E. Niederer ◽  
M. Steinmann-Zwicky

Male first instar larvae possess more germ cells in their gonads than female larvae of the same stage. To determine the earliest time point of sexual dimorphism in germ cell number, we have counted the germ cells of sexed embryos at different developmental stages. We found no difference in germ cell number of male and female embryos at the blastoderm and early gastrulation stage, or when germ cells are about to exit the midgut pocket. We find, however, that males have significantly more germ cells than females as soon as the germ cells are near the places where the gonads are formed and in all later stages. Our results show that germ cells are subject to a sex-specific control mechanism that regulates the number of germ cells already in embryos.


Author(s):  
John R McCarrey ◽  
Keren Cheng

Abstract More than a decade ago, the ENCODE and NIH Epigenomics Roadmap consortia organized large multi-laboratory efforts to profile the epigenomes of >110 different mammalian somatic cell types. This generated valuable publicly accessible datasets that are being mined to reveal genome-wide patterns of a variety of different epigenetic parameters. This consortia approach facilitated the powerful and comprehensive multiparametric integrative analysis of the epigenomes in each cell type. However, no germ cell types were included among the cell types characterized by either of these consortia. Thus, comprehensive epigenetic profiling data is not generally available for the most evolutionarily important cells, male and female germ cells. We discuss the need for reproductive biologists to generate similar multiparametric epigenomic profiling datasets for both male and female germ cells at different developmental stages, and summarize our recent effort to derive such data for mammalian spermatogonial stem cells and progenitor spermatogonia.


2021 ◽  
Author(s):  
Shuiqiao Yuan ◽  
Shenglei Feng ◽  
Jinmei Li ◽  
Hui Wen ◽  
Kuan Liu ◽  
...  

Abstract Coordinated regulation of alternative pre-mRNA splicing is essential for germ cell development. However, the molecular mechanism underlying that control alternative mRNA expression during germ cell development remains poorly understood. Herein, we showed that hnRNPH1, an RNA-binding protein, is highly expressed in the reproductive system and localized in the chromosomes of meiotic cells but excluded from the XY body in pachytene spermatocytes and recruits the splicing regulators PTBP2 and SRSF3 and cooperatively regulates the alternative splicing of the critical genes that are required for spermatogenesis. Conditional knockout Hnrnph1 in spermatogenic cells caused many abnormal splicing events that affect genes related to meiosis and communication between germ cells and Sertoli cells, characterized by asynapsis of chromosomes and impairment of germ-Sertoli communications, ultimately leading to male sterility. We further showed that hnRNPH1 could directly bind to SPO11 and recruit the splicing regulators PTBP2 and SRSF3 to regulate the alternative splicing of the target genes cooperatively. Strikingly, Hnrnph1 germline-specific mutant female mice were also infertile, and Hnrnph1-deficient oocytes exhibited a similar defective synapsis and cell-cell junction as shown in Hnrnph1-deficient male germ cells. Collectively, our data reveal an essential role for hnRNPH1 in regulating pre-mRNA splicing during spermatogenesis and oogenesis and support a molecular model whereby hnRNPH1 governs a network of alternative splicing events in germ cells via recruiting PTBP2 and SRSF3.


Development ◽  
2000 ◽  
Vol 127 (19) ◽  
pp. 4253-4264 ◽  
Author(s):  
N.C. Grieder ◽  
M. de Cuevas ◽  
A.C. Spradling

Differentiation of the Drosophila oocyte takes place in a cyst of 16 interconnected germ cells and is dependent on a network of microtubules that becomes polarized as differentiation progresses (polarization). We have investigated how the microtubule network polarizes using a GFP-tubulin construct that allows germ-cell microtubules to be visualized with greater sensitivity than in previous studies. Unexpectedly, microtubules are seen to associate with the fusome, an asymmetric germline-specific organelle, which elaborates as cysts form and undergoes complex changes during cyst polarization. This fusome-microtubule association occurs periodically during late interphases of cyst divisions and then continuously in 16-cell cysts that have entered meiotic prophase. As meiotic cysts move through the germarium, microtubule minus ends progressively focus towards the center of the fusome, as visualized using a NOD-lacZ marker. During this same period, discrete foci rich in gamma tubulin that very probably correspond to migrating cystocyte centrosomes also associate with the fusome, first on the fusome arms and then in its center, subsequently moving into the differentiating oocyte. The fusome is required for this complex process, because microtubule network organization and polarization are disrupted in hts(1) mutant cysts, which lack fusomes. Our results suggest that the fusome, a specialized membrane-skeletal structure, which arises in early germ cells, plays a crucial role in polarizing 16-cell cysts, at least in part by interacting with microtubules and centrosomes.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Min Chen ◽  
Min Chen ◽  
Suren Chen ◽  
Jingjing Zhou ◽  
Fangfang Dong ◽  
...  

The interaction between germ cell and somatic cell plays important roles in germ cell development. However, the exact function of gonad somatic cell in germ cell differentiation is unclear. In the present study, the function of gonad somatic cell in germ cell meiosis was examined by using mouse models with aberrant somatic cell differentiation. In Wt1R394W/R394W mice, the genital ridge is absent due to the apoptosis of coelomic epithelial cells. Interestingly, in both male and female Wt1R394W/R394W germ cells, STRA8 was detected at E12.5 and the scattered SYCP3 foci were observed at E13.5 which was consistent with control females. In Wt1-/flox; Cre-ERTM mice, Wt1 was inactivated by the injection of tamoxifen at E9.5 and the differentiation of Sertoli and granulosa cells was completely blocked. We found that most germ cells were located outside of genital ridge after Wt1 inactivation. STRA8, SYCP3, and γH2AX proteins were detected in germ cells of both male and female Wt1-/flox; Cre-ERTM gonads, whereas no thread-like SYCP3 signal was observed. Our study demonstrates that aberrant development of gonad somatic cells leads to ectopic expression of meiosis-associated genes in germ cells, but meiosis was arrested before prophase I. These results suggest that the proper differentiation of gonad somatic cells is essential for germ cell meiosis.


2004 ◽  
Vol 15 (3) ◽  
pp. 1031-1043 ◽  
Author(s):  
Ulrich Schlecht ◽  
Philippe Demougin ◽  
Reinhold Koch ◽  
Leandro Hermida ◽  
Christa Wiederkehr ◽  
...  

We report a comprehensive large-scale expression profiling analysis of mammalian male germ cells undergoing mitotic growth, meiosis, and gametogenesis by using high-density oligonucleotide microarrays and highly enriched cell populations. Among 11,955 rat loci investigated, 1268 were identified as differentially transcribed in germ cells at subsequent developmental stages compared with total testis, somatic Sertoli cells as well as brain and skeletal muscle controls. The loci were organized into four expression clusters that correspond to somatic, mitotic, meiotic, and postmeiotic cell types. This work provides information about expression patterns of ∼200 genes known to be important during male germ cell development. Approximately 40 of those are included in a group of 121 transcripts for which we report germ cell expression and lack of transcription in three somatic control cell types. Moreover, we demonstrate the testicular expression and transcriptional induction in mitotic, meiotic, and/or postmeiotic germ cells of 293 as yet uncharacterized transcripts, some of which are likely to encode factors involved in spermatogenesis and fertility. This group also contains potential germ cell-specific targets for innovative contraceptives. A graphical display of the data is conveniently accessible through the GermOnline database at http://www.germonline.org .


2020 ◽  
Author(s):  
Ryuki Shimada ◽  
Hiroko Koike ◽  
Takamasa Hirano ◽  
Yumiko Saga

AbstractDuring murine germ cell development, male germ cells enter the mitotically arrested G0 stage, which is an initial step of sexually dimorphic differentiation. The male specific RNA-binding protein NANOS2 has a key role in suppressing the cell cycle in germ cells. However, the detailed mechanism of how NANOS2 regulates the cell cycle remains unclear. Using single-cell RNA sequencing (scRNA-seq), we extracted the cell cycle state of each germ cell in wild-type and Nanos2-KO testes, and revealed that Nanos2 expression starts in mitotic cells and induces mitotic arrest. We also found that NANOS2 and p38 MAPK work in parallel to regulate the cell cycle, suggesting that several different cascades are involved in the induction of cell cycle arrest. Furthermore, we identified Rheb, a regulator of mTORC1, and Ptma as possible targets of NANOS2. We propose that the repression of the cell cycle is a primary function of NANOS2 and that it is mediated via the suppression of mTORC1 activity by repressing Rheb in a post-transcriptional manner.


2019 ◽  
Author(s):  
Zachariah McLean ◽  
Sarah Jane Appleby ◽  
Jingwei Wei ◽  
Russell Grant Snell ◽  
Björn Oback

AbstractMultiplying the germline would increase the number of offspring that can be produced from selected animals, accelerating genetic improvement for livestock breeding. This could be achieved by producing multiple chimaeric animals, each carrying a mix of donor and host germ cells in their gonads. However, such chimaeric germlines would produce offspring from both donor and host genotypes, limiting the rate of genetic improvement. To resolve this problem and produce chimaeras with absolute donor germline transmission, we have disrupted the RNA-binding protein DAZL and generated germ cell-deficient host animals. Using Cas9 mediated homology-directed repair (HDR), we introduced a DAZL loss-of-function mutation in male ovine fetal fibroblasts. Following manual single-cell isolation, 4/48 (8.3%) of donor cell strains were homozygously HDR-edited. Sequence-validated strains were used as nuclear donors for somatic cell cloning to generate three lambs, which died at birth. All DAZL-null male neonatal sheep lacked germ cells. Somatic cells within their testes were morphologically intact and expressed normal levels of somatic cell-specific marker genes, indicating that the germ cell niche remained intact. This extends the DAZL-mutant phenotype beyond mice into agriculturally relevant ruminants, providing a pathway for using absolute transmitters in rapid livestock improvement.


Reproduction ◽  
2010 ◽  
Vol 139 (2) ◽  
pp. 381-393 ◽  
Author(s):  
Masashi Yamaji ◽  
Takashi Tanaka ◽  
Mayo Shigeta ◽  
Shinichiro Chuma ◽  
Yumiko Saga ◽  
...  

Mutations of RNA-binding proteins such as NANOS3, TIAL1, and DND1 in mice have been known to result in the failure of survival and/or proliferation of primordial germ cells (PGCs) soon after their fate is specified (around embryonic day (E) 8.0), leading to the infertility of these animals. However, the mechanisms of actions of these RNA-binding proteins remain largely unresolved. As a foundation to explore the role of these RNA-binding proteins in germ cells, we established a novel transgenic reporter strain that expresses NANOS3 fused with EGFP under the control of Nanos3 regulatory elements. NANOS3–EGFP exhibited exclusive expression in PGCs as early as E7.25, and continued to be expressed in female germ cells until around E14.5 and in male germ cells throughout the fetal period with declining expression levels after E16.5. NANOS3–EGFP resumed strong expression in postnatal spermatogonia and continued to be expressed in undifferentiated spermatogonial cells in adults. Importantly, the Nanos3–EGFP transgene rescued the sterile phenotype of Nanos3 homozygous mutants, demonstrating the functional equivalency of NANOS3–EGFP with endogenous NANOS3. We found that throughout germ cell development, a predominant amount of  NANOS3–EGFP co-localized with TIAL1 (also known as TIAR) and phosphorylated eukaryotic initiation factor 2α, markers for the stress granules, whereas a fraction of it showed co-localization with DCP1A, a marker for the processing bodies. On the other hand, NANOS3–EGFP did not co-localize with Tudor domain-containing protein 1, a marker for the intermitochondrial cements, in spermatogenic cells. These findings unveil the presence of distinct posttranscriptional regulations in PGCs soon after their specification, for which RNA-binding proteins such as NANOS3 and TIAL1 would play critical functions.


Sign in / Sign up

Export Citation Format

Share Document