scholarly journals Regulation of Phosphoinositide Levels by the Phospholipid Transfer Protein Sec14p Controls Cdc42p/p21-Activated Kinase-Mediated Cell Cycle Progression at Cytokinesis

2007 ◽  
Vol 6 (10) ◽  
pp. 1814-1823 ◽  
Author(s):  
Alicia G. Howe ◽  
Gregory D. Fairn ◽  
Kendra MacDonald ◽  
Vytas A. Bankaitis ◽  
Christopher R. McMaster

ABSTRACT Sec14p is an essential phosphatidylcholine/phosphatidylinositol transfer protein with a well-described role in the regulation of Golgi apparatus-derived vesicular transport in yeast. Inactivation of the CDP-choline pathway for phosphatidylcholine synthesis allows cells to survive in the absence of Sec14p function through restoration of Golgi vesicular transport capability. In this study, Saccharomyces cerevisiae cells containing a SEC14 temperature-sensitive allele along with an inactivated CDP-choline pathway were transformed with a high-copy-number yeast genomic library. Genes whose increased expression inhibited cell growth in the absence of Sec14p function were identified. Increasing levels of the Rho GTPase Cdc42p and its direct effector kinases Cla4p and Ste20p prevented the growth of cells lacking Sec14p and CDP-choline pathway function. Growth suppression was accompanied by an increase in large and multiply budded cells. This effect on polarized cell growth did not appear to be due to an inability to establish cell polarity, since both the actin cytoskeleton and localization of the septin Cdc12p were unaffected by increased expression of Cdc42p, Cla4p, or Ste20p. Nuclei were present in both the mother cell and the emerging bud, consistent with Sec14p regulation of the cell cycle subsequent to anaphase but prior to cytokinesis/septum breakdown. Increased expression of phosphatidylinositol 4-kinases and phosphatidylinositol 4-phosphate 5-kinase prevented growth arrest by CDC42, CLA4, or STE20 upon inactivation of Sec14p function. Sec14p regulation of phosphoinositide levels affects cytokinesis at the level of the Cdc42p/Cla4p/Ste20p signaling cascade.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinhong Qi ◽  
Li Zhou ◽  
Dongqing Li ◽  
Jingyuan Yang ◽  
He Wang ◽  
...  

Abstract Background Cell division cycle 25A (CDC25A) is a well-recognized regulator of cell cycle progression and is involved in cancer development. This work focused on the function of CDC25A in cervical cancer cell growth and the molecules involved. Methods A GEO dataset GSE63514 comprising data of cervical squamous cell carcinoma (CSCC) tissues was used to screen the aberrantly expressed genes in cervical cancer. The CDC25A expression in cancer and normal tissues was predicted in the GEPIA database and that in CSCC and normal cells was determined by RT-qPCR and western blot assays. Downregulation of CDC25A was introduced in CSCC cells to explore its function in cell growth and the cell cycle progression. The potential regulators of CDC25A activity and the possible involved signaling were explored. Results CDC25A was predicted to be overexpressed in CSCC, and high expression of CDC25A was observed in CSCC cells. Downregulation of CDC25A in ME180 and C33A cells reduced cell proliferation and blocked cell cycle progression, and it increased cell apoptosis. ALX3 was a positive regulator of CDC25A through transcription promotion. It recruited a histone demethylase, lysine demethylase 2B (KDM2B), to the CDC25A promoter, which enhanced CDC25A expression through demethylation of H3k4me3. Overexpression of ALX3 in cells blocked the inhibitory effects of CDC25A silencing. CDC25A was found as a positive regulator of the PI3K/Akt signaling pathway. Conclusion This study suggested that the ALX3 increased CDC25A expression through KDM2B-mediated demethylation of H3K4me3, which induced proliferation and cell cycle progression of cervical cancer cells.


1999 ◽  
Vol 341 (2) ◽  
pp. 435-444 ◽  
Author(s):  
Jacqueline WHATMORE ◽  
Claudia WIEDEMANN ◽  
Pennti SOMERHARJU ◽  
Philip SWIGART ◽  
Shamshad COCKCROFT

Receptor-mediated phospholipase C (PLC) hydrolysis of phosphoinositides is accompanied by the resynthesis of phosphatidylinositol (PI). Hydrolysis of phosphoinositides occurs at the plasma membrane, and the resulting diacylglycerol (DG) is converted into phosphatidate (PA). Two enzymes located at the endoplasmic reticulum (ER) function sequentially to convert PA back into PI. We have established an assay whereby the resynthesis of PI could be followed in permeabilized cells. In the presence of [γ-32P]ATP, DG generated by PLC activation accumulates label when converted into PA. The 32P-labelled PA is subsequently converted into labelled PI. The formation of labelled PI reports the arrival of labelled PA from the plasma membrane to the ER. Cytosol-depleted, permeabilized human neutrophils are capable of PI resynthesis following stimulation of PLCβ (in the presence of phosphatidylinositol-transfer protein), provided that CTP and inositol are also present. We also found that wortmannin, an inhibitor of endocytosis, or cooling the cells to 15 °C did not stop PI resynthesis. We conclude that PI resynthesis is dependent neither on vesicular transport mechanisms nor on freely diffusible, soluble transport proteins. Phosphatidylcholine-derived PA generated by the ADP-ribosylation-factor-stimulated phospholipase D pathway was found to accumulate label, reflecting the rapid cycling of PA to DG, and back. This labelled PA was not converted into PI. We conclude that PA derived from the PLC pathway is selected for PI resynthesis, and its transfer to the ER could be membrane-protein-mediated at sites of close membrane contact.


2010 ◽  
Vol 9 (10) ◽  
pp. 1418-1431 ◽  
Author(s):  
Emma L. Turner ◽  
Mackenzie E. Malo ◽  
Marnie G. Pisclevich ◽  
Megan D. Dash ◽  
Gerald F. Davies ◽  
...  

ABSTRACT The anaphase-promoting complex (APC), a large evolutionarily conserved ubiquitin ligase complex, regulates cell cycle progression through mitosis and G1. Here, we present data suggesting that APC-dependent cell cycle progression relies on a specific set of posttranslational histone-modifying enzymes. Multiple APC subunit mutants were impaired in total and modified histone H3 protein content. Acetylated H3K56 (H3K56Ac) levels were as reduced as those of total H3, indicating that loading histones with H3K56Ac is unaffected in APC mutants. However, under restrictive conditions, H3K9Ac and dimethylated H3K79 (H3K79me2) levels were more greatly reduced than those of total H3. In a screen for histone acetyltransferase (HAT) and histone deacetylase (HDAC) mutants that genetically interact with the apc5 CA (chromatin assembly) mutant, we found that deletion of GCN5 or ELP3 severely hampered apc5 CA temperature-sensitive (ts) growth. Further analyses showed that (i) the elp3Δ gcn5Δ double mutant ts defect was epistatic to that observed in apc5 CA cells; (ii) gcn5Δ and elp3Δ mutants accumulate in mitosis; and (iii) turnover of the APC substrate Clb2 is not impaired in elp3Δ gcn5Δ cells. Increased expression of ELP3 and GCN5, as well as genes encoding the HAT Rtt109 and the chromatin assembly factors Msi1 and Asf1, suppressed apc5 CA defects, while increased APC5 expression partially suppressed elp3Δ gcn5Δ growth defects. Finally, we demonstrate that Gcn5 is unstable during G1 and following G1 arrest and is stabilized in APC mutants. We present our working model in which Elp3/Gcn5 and the APC work together to facilitate passage through mitosis and G1. To progress into S, we propose that at least Gcn5 must then be targeted for degradation in an APC-dependent fashion.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Karen Baker ◽  
Irene A Gyamfi ◽  
Gregory I Mashanov ◽  
Justin E Molloy ◽  
Michael A Geeves ◽  
...  

Cells respond to changes in their environment through signaling networks that modulate cytoskeleton and membrane organization to coordinate cell-cycle progression, polarized cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type one myosin, Myo1, is modulated by TORC2-signalling-dependent phosphorylation. Phosphorylation of the conserved serine at position 742 (S742) within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains. S742 phosphorylation thereby couples the calcium and TOR signaling networks that are involved in the modulation of myosin-1 dynamics to co-ordinate actin polymerization and membrane reorganization at sites of endocytosis and polarised cell growth in response to environmental and cell-cycle cues.


1987 ◽  
Vol 7 (2) ◽  
pp. 775-779
Author(s):  
A Fainsod ◽  
G Diamond ◽  
M Marcus ◽  
F H Ruddle

We report here the cloning of a human cell cycle gene capable of complementing a temperature-sensitive (ts) S-phase cell cycle mutation in a Chinese hamster cell line. Cloning was performed as follows. A human genomic library in phage lambda containing 600,000 phages was screened with labeled cDNA synthesized from an mRNA fraction enriched for the specific cell cycle gene message. Plaques containing DNA inserts which hybridized to the cDNA were picked, and their DNAs were assayed for transient complementation in DNA transformation experiments. The transient complementation assay we developed is suitable for most cell cycle genes and indeed for many genes whose products are required for cell proliferation. Of 845 phages screened, 1 contained an insert active in transient complementation of the ts cell cycle mutation. Introduction of this phage into the ts cell cycle mutant also gave rise to stable transformants which grew normally at the restrictive temperature for the ts mutant cells.


2020 ◽  
Vol 117 (44) ◽  
pp. 27388-27399
Author(s):  
Xili Liu ◽  
Seungeun Oh ◽  
Leonid Peshkin ◽  
Marc W. Kirschner

The fine balance of growth and division is a fundamental property of the physiology of cells, and one of the least understood. Its study has been thwarted by difficulties in the accurate measurement of cell size and the even greater challenges of measuring growth of a single cell over time. We address these limitations by demonstrating a computationally enhanced methodology for quantitative phase microscopy for adherent cells, using improved image processing algorithms and automated cell-tracking software. Accuracy has been improved more than twofold and this improvement is sufficient to establish the dynamics of cell growth and adherence to simple growth laws. It is also sufficient to reveal unknown features of cell growth, previously unmeasurable. With these methodological and analytical improvements, in several cell lines we document a remarkable oscillation in growth rate, occurring throughout the cell cycle, coupled to cell division or birth yet independent of cell cycle progression. We expect that further exploration with this advanced tool will provide a better understanding of growth rate regulation in mammalian cells.


Biomolecules ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 473
Author(s):  
Irina Epifantseva ◽  
Shaohua Xiao ◽  
Rachel E. Baum ◽  
André G. Kléber ◽  
TingTing Hong ◽  
...  

Connexin 43 (Cx43) is a gap junction protein that assembles at the cell border to form intercellular gap junction (GJ) channels which allow for cell–cell communication by facilitating the rapid transmission of ions and other small molecules between adjacent cells. Non-canonical roles of Cx43, and specifically its C-terminal domain, have been identified in the regulation of Cx43 trafficking, mitochondrial preconditioning, cell proliferation, and tumor formation, yet the mechanisms are still being explored. It was recently identified that up to six truncated isoforms of Cx43 are endogenously produced via alternative translation from internal start codons in addition to full length Cx43, all from the same mRNA produced by the gene GJA1. GJA1-11k, the 11kDa alternatively translated isoform of Cx43, does not have a known role in the formation of gap junction channels, and little is known about its function. Here, we report that over expressed GJA1-11k, unlike the other five truncated isoforms, preferentially localizes to the nucleus in HEK293FT cells and suppresses cell growth by limiting cell cycle progression from the G0/G1 phase to the S phase. Furthermore, these functions are independent of the channel-forming full-length Cx43 isoform. Understanding the apparently unique role of GJA1-11k and its generation in cell cycle regulation may uncover a new target for affecting cell growth in multiple disease models.


2005 ◽  
Vol 289 (4) ◽  
pp. C826-C835 ◽  
Author(s):  
Sharon Barone ◽  
Tomohisa Okaya ◽  
Steve Rudich ◽  
Snezana Petrovic ◽  
Kathy Tenrani ◽  
...  

Ischemia-reperfusion injury (IRI) in liver and other organs is manifested as an injury phase followed by recovery and resolution. Control of cell growth and proliferation is essential for recovery from the injury. We examined the expression of three related regulators of cell cycle progression in liver IRI: spermidine/spermine N-acetyltransferase (SSAT), p21 (a cyclin-dependent kinase inhibitor), and stathmin. Mice were subjected to hepatic IRI, and liver tissues were harvested at timed intervals. The expression of SSAT, the rate-limiting enzyme in the polyamine catabolic pathway, had increased fivefold 6 h after IRI and correlated with increased putrescine levels in the liver, consistent with increased SSAT enzymatic activity in IRI. The expression of p21, which is transactivated by p53, was undetectable in sham-operated animals but was heavily induced at 12 and 24 h of reperfusion and declined to undetectable baseline levels at 72 h of reperfusion. The interaction of the polyamine pathway with the p53-p21 pathway was shown in vitro, where activation of SSAT with polyamine analog or the addition of putrescine to cultured hepatocytes induced the expression of p53 and p21 and decreased cell viability. The expression of stathmin, which is under negative transcriptional regulation by p21 and controls cell proliferation and progression through mitosis, remained undetectable at 6, 12, and 24 h of reperfusion and was progressively and heavily induced at 48 and 72 h of reperfusion. Double-immunofluorescence labeling with antibodies against stathmin and PCNA, a marker of cell proliferation, demonstrated colocalization of stathmin and PCNA at 48 and 72 h of reperfusion in hepatocytes, indicating the initiation of cell proliferation. The distinct and sequential upregulation of SSAT, p21, and stathmin, along with biochemical activation of the polyamine catabolic pathway in IRI in vivo and the demonstration of p53-p21 upregulation by SSAT and putrescine in vitro, points to the important role of regulators of cell growth and cell cycle progression in the pathophysiology and/or recovery in liver IRI. The data further suggest that SSAT may play a role in the initiation of injury, whereas p21 and stathmin may be involved in the resolution and recovery after liver IRI.


Sign in / Sign up

Export Citation Format

Share Document