scholarly journals RNA-Sequencing Analysis of Paternal Low-Protein Diet-Induced Gene Expression Change in Mouse Offspring Adipocytes

2019 ◽  
Vol 9 (7) ◽  
pp. 2161-2170 ◽  
Author(s):  
Nhung Hong Ly ◽  
Toshio Maekawa ◽  
Keisuke Yoshida ◽  
Yang Liu ◽  
Masafumi Muratani ◽  
...  
2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 281-282
Author(s):  
Cedrick N Shili ◽  
Mohammad Habibi ◽  
Julia Sutton ◽  
Jessie Barnes ◽  
Jacob Burchkonda ◽  
...  

Abstract Moderately low protein (MLP) diets can help decrease nutrient excretion from the swine production. However, MLP diets negatively impact growth performance. We hypothesized that supplementing MLP diets with phytogenics may reduce the negative effects of these diets on growth. The objective of this study was to investigate the effect of a phytogenic water additive (PWA; Herbanimal®) on growth performance, blood metabolite and gene expression of amino acids transporters in pigs fed with MLP diets. Forty-eight weaned barrows were allotted to six dietary treatments (n = 8) for 4 weeks: >CON-NS: standard protein diet-no PWA; CON-LS: standard protein diet-low PWA dose (4 ml/L); CON-HS: standard protein diet-high PWA dose (8 ml/L); LP-NS: low protein diet-no PWA; LP-LS: low protein diet-low PWA dose (4 ml/L); LP-HS: low protein diet- high PWA dose (8 ml/L). Feed intake and body weight were recorded daily and weekly, respectively. At week 4, blood and tissue samples were collected and analyzed for metabolites using a chemistry analyzer and amino acid transporters using qPCR, respectively. The data were analyzed by univariate GLM (SPSS®) and the means were separated using paired Student’s t-test corrected by Benjamini-Hochberg. Pigs fed CON-HS improved the average daily gain and serum calcium and phosphorus concentrations compared to CON-NS. Pigs fed LP-LS had higher serum phosphorus and blood urea nitrogen compared to the pigs fed with LP-NS. The mRNA abundance of SLC7A11 in the jejunum was lower in CON-LS and CON-HS compared to CON-NS. Additionally, mRNA abundance of SLC6A19 in the jejunum of pigs fed with LP-LS was higher compared to LP-NS and lower in CON-HS relative to pigs fed with CON-LS. In conclusion, PWA improved the growth performance of pigs fed standard protein diets but not low protein diets. Further, the PWA improved the concentrations of blood calcium and phosphorous in pigs fed MLP diets. Funding: Agrivida and Animal Health and Production and Animal Products: Improved Nutritional Performance, Growth, and Lactation of Animals from the USDA-NIFA.


Reproduction ◽  
2006 ◽  
Vol 132 (2) ◽  
pp. 265-277 ◽  
Author(s):  
Wing Yee Kwong ◽  
Daniel J Miller ◽  
Elizabeth Ursell ◽  
Arthur E Wild ◽  
Adrian P Wilkins ◽  
...  

In our previous study, we have shown that maternal low protein diet (LPD, 9% casein vs 18% casein control) fed exclusively during the rat preimplantation period (0–4.25 day postcoitum) induced low birth weight, altered postnatal growth and hypertension in a gender-specific manner. In this study, we investigated the effect of maternal LPD restricted only to the preimplantation period (switched diet) or provided throughout gestation on fetal growth and imprinted gene expression in blastocyst and fetal stages of development. Male, but not female, blastocysts collected from LPD dams displayed a significant reduction (30%) inH19mRNA level. A significant reduction inH19(9.4%) andIgf2(10.9%) mRNA was also observed in male, but not in female, fetal liver at day 20 postcoitum in response to maternal LPD restricted to the preimplantation period. No effect on the blastocyst expression ofIgf2Rwas observed in relation to maternal diet. The reduction inH19mRNA expression did not correlate with an observed alteration in DNA methylation at theH19differentially methylated region in fetal liver. In contrast, maternal LPD throughout 20 days of gestation did not affect male or femaleH19andIgf2imprinted gene expression in fetal liver. Neither LPD nor switched diet treatments affectedH19andIgf2imprinted gene expression in day 20 placenta. Our findings demonstrate that one contributor to the alteration in postnatal growth induced by periconceptional maternal LPD may derive from a gender-specific programming of imprinted gene expression originating within the preimplantation embryo itself.


2020 ◽  
Vol 30 (1) ◽  
pp. 46-52 ◽  
Author(s):  
Juliana Saraiva dos Anjos ◽  
Ludmila Ferreira Medeiros de França Cardozo ◽  
Ana Paula Black ◽  
Greicielle Santos da Silva ◽  
Drielly Cristhiny Mendes de Vargas Reis ◽  
...  

2021 ◽  
pp. 1-29
Author(s):  
Mingzhu Cai ◽  
Jie Zhang ◽  
Hong Chen ◽  
Yuan-Xiang Pan

Abstract This study investigates the mechanism by which maternal protein restriction induces hepatic autophagy-related gene expression in the offspring of rats. Pregnant Sprague-Dawley rats were fed either a control diet (C, 18% energy from protein) or a low-protein diet (LP, 8.5% energy from protein) during gestation, followed by the control diet during lactation and post-weaning. Liver tissue was collected from the offspring at postnatal day 38 and divided into four groups according to sex and maternal diet (F-C, F-LP, M-C, and M-LP) for further analysis. Autophagy-related mRNA and protein levels were determined by real-time PCR and Western blotting, respectively. In addition, chromatin immunoprecipitation (ChIP) was performed to investigate the interactions between transcription factors and autophagy-related genes. Protein levels of p-eIF2a and ATF4 were increased only in the female offspring born to dams fed the LP diet. Correlatively, the mRNA expression of hepatic autophagy-related genes including Map1lc3b, P62/Sqstm1, Becn1, Atg3, Atg7, and Atg10 was significantly greater in the F-LP group than in the F-C group. Furthermore, ChIP results showed greater ATF4 and C/EBP homology protein (CHOP) binding at the regions of a set of autophagy-related genes in the F-LP group than in the F-C group. Our data demonstrated that a maternal LP diet transcriptionally programmed hepatic autophagy-related gene expression only in female rat offspring. This transcriptional program involved the activation of the eIF2α/ATF4 pathway and intricate regulation by transcription factors ATF4 and CHOP.


2010 ◽  
Vol 41 (3) ◽  
pp. 203-211 ◽  
Author(s):  
Guangping Chen ◽  
Yuan Yang ◽  
Otto Fröhlich ◽  
Janet D. Klein ◽  
Jeff M. Sands

Protein restriction and hypercalcemia result in a urinary concentrating defect in rats and humans. Previous tubular perfusion studies show that there is an increased active urea transport activity in the initial inner medullary (IM) collecting duct in low-protein diet (LPD) and vitamin D (Vit D) animal models. To investigate the possible mechanisms that cause the urinary concentrating defect and to clone the new active urea transporter, we employed a modified two-tester suppression subtractive hybridization (ttSSH) approach and examined gene expression induced by LPD and Vit D in kidney IM base. Approximately 600 clones from the subtracted library were randomly selected; 150 clones were further confirmed to be the true positive genes by slot blot hybridization with subtracted probes from LPD and Vit D and sent for DNA sequencing. We identified 10 channel/transporter genes that were upregulated in IM base in LPD and Vit D animal models; 8 were confirmed by real-time PCR. These genes include aquaporin 2 (AQP2), two-pore calcium channel protein 2, brain-specific organic cation transporter, Na+- and H+-coupled glutamine transporter, and solute carrier family 25. Nine genes are totally new, and twelve are uncharacterized hypothetical proteins. Among them, four genes were shown to be new transmembrane proteins as judged by Kyte-Doolittle hydrophobic plot analysis. ttSSH provides a useful method to identify new genes from two conditioned populations.


2005 ◽  
Vol 22 (1) ◽  
pp. 48-56 ◽  
Author(s):  
Simon J. M. Welham ◽  
Paul R. Riley ◽  
Angie Wade ◽  
Mike Hubank ◽  
Adrian S. Woolf

Human epidemiological data associating birth weight with adult disease suggest that organogenesis is “programmed” by maternal diet. In rats, protein restriction in pregnancy produces offspring with fewer renal glomeruli and higher systemic blood pressures than controls. We tested the hypothesis that maternal diet alters gene expression in the metanephros, the precursor of the definitive mammalian kidney. We demonstrated that maternal low-protein diet initiated when pregnancy starts and maintained to embryonic day 13, when the metanephros consists of mesenchyme surrounding a once-branched ureteric bud, is sufficient to significantly reduce glomerular numbers in offspring by about 20%. As assessed by representational difference analyses and real-time quantitative polymerase chain reactions, low-protein diet modulated gene expression in embryonic day 13 metanephroi. In particular, levels of prox-1, the ortholog of Drosophila transcription factor prospero, and cofilin-1, a regulator of the actin cytoskeleton, were reduced. During normal metanephrogenesis, prox-1 protein was first detected in mesenchymal cells around the ureteric tree and thereafter in nascent nephron epithelia, whereas cofilin-1 immunolocalized to bud derivatives and condensing mesenchyme. Previously, we reported that low-protein diets increased mesenchymal apoptosis cells when metanephrogenesis began and thereafter reduced numbers of precursor cells. Collectively, these studies prove that the maternal diet programs the embryonic kidney, altering cell turnover and gene expression at a time when nephrons and glomeruli have yet to form. The human implication is that the maternal diet ingested between conception and 5- 6-wk gestation contributes to the variation in glomerular numbers that are known to occur between healthy and hypertensive populations.


1994 ◽  
Vol 45 (6) ◽  
pp. 1593-1605 ◽  
Author(s):  
Tsukasa Nakamura ◽  
Mitsumine Fukui ◽  
Isao Ebihara ◽  
Yasuhiko Tomino ◽  
Hikaru Koide

Sign in / Sign up

Export Citation Format

Share Document