scholarly journals The horse as a model for translational orthopedic research: examples of studies on the regeneration of cartilage and bone conducted in Costa Rica

2019 ◽  
Vol 37 (3) ◽  
pp. 9-10
Author(s):  
Rafael Vindas Bolaños ◽  
Jos Malda ◽  
René Van Weeren ◽  
Janny De Grauw

The paper provides results published or to be published of long-term in vivo equine studies to evaluate techniques of possible regenerative matrices of cartilage and bone, by means of cell-free implants or stimulation of the bone marrow. From the fixation techniques analyzed, it can be concluded that the best alternatives are the pressure technique for subchondral defects and a novel hydrogel with self-adhesive capacity for chondral defects. The equine coxal tuberosity was used for the first time as a model for regeneration studies of bone defects, analyzing scaffolds based on tricalcium phosphate, polymers and nanoparticles, by means of 3-D printing. Osteoconductivity, osteoinductivity, and the importance of microporosity were documented.Given that decellularized materials do not always give significant desired results in the regeneration of cartilage, it is important to conduct long-term studies. The technique of nanofracture and a novel self-adhesive hydrogel in the knee of the equine showed promising preliminary results in the regeneration of cartilage.The knee and the coxal tuberosity of the horse represent models of studying cartilage and bone regeneration in a true translational sense as a source of highly valuable information for clinical studies, for both horses and humans.

2019 ◽  
Vol 484 (2) ◽  
pp. 238-242
Author(s):  
N. A. Semenova ◽  
P. E. Menshchikov ◽  
A. V. Manzhurtsev ◽  
M. V. Ublinskiy ◽  
T. A. Akhadov ◽  
...  

Intracellular concentrations of N acetyaspartate (NAA), aspartate (Asp) and glutamate (Glu) were determined for the first time in human brain in vivo, and the effect of severe traumatic brain injury on NAA synthesis in acute and late post-traumatic period was investigated. In MRI‑negative frontal lobes one day after injury Asp and Glu levels were found to decrease by 45 and 35%, respectively, while NAA level decreased by only 16%. A negative correlation between NAA concentration and the ratio of Asp/Glu concentrations was found. In the long-term period, Glu level returned to normal, Asp level remained below normal by 60%, NAA level was reduced by 65% relative to normal, and Asp/Glu ratio significantly decreased. The obtained results revealed leading role of the neuronal aspartate-malate shuttle in violation of NAA synthesis.


2019 ◽  
Vol 19 (2) ◽  
Author(s):  
Luiz Fernando Carmo ◽  
Ingrid Ribeiro Miguel ◽  
Pedro H. Pinna ◽  
Daniel Silva Fernandes ◽  
Manoela Woitovicz-Cardoso

Abstract: We provide an inventory checklist of the amphibians from Parque Nacional da Restinga de Jurubatiba (PNRJ), a sandy coastal environment in southeastern Brazil. As a result of three years of surveys, from August 2013 to June 2016, a total of 36 amphibians species were recorded - one Gymnophiona (Typhlonectidae) and 35 species of five anuran families: Bufonidae (2 species), Craugastoridae (1), Hylidae (21), Leptodactylidae (8), and Microhylidae (3). One specie is reported for the first time for the restinga ecosystem (Chthonerpeton braestrupi) and 24 species were recorded for the first time to the PNRJ. This result reinforces the importance of long-term studies for accurate knowledge of the biodiversity. Considering that the biodiversity of the fragments of the sandy coastal environments in the state of Rio de Janeiro is poorly known, the present study provided a more detailed knowledge about different aspects of the biodiversity in the PNRJ, contributing to the preservation of this threatened ecosystem.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 136-136
Author(s):  
M.M. van Loenen ◽  
R.S. Hagedoorn ◽  
M. Hoogeboom ◽  
M.G.D. Kester ◽  
Roelof Willemze ◽  
...  

Abstract TCR-transfer to engineer tumor-specific T cells may be a strategy for adoptive immunotherapy. For complete eradication of leukemic cells and to achieve long-term protection, potent effector T cell function and long-term T cell persistence are necessary. Therefore, we propose to use virus specific T cells for TCR transfer since such engineered dual specific T cells can be triggered via their endogenous TCR by latent presence of viral antigens, improving their long-term persistence. We have previously shown that virus specific T cells can be redirected towards anti-leukemic reactivity by transfer of the hematopoietic minor histocompatibility antigen HA-2 specific TCR (HA-2-TCR). The TCR-transferred virus specific T cells showed differences in TCR cell surface make up, which was stable for months after repetitive non-specific TCR triggering. The T cells expressed either both TCRs intermediately at the cell surface, or the endogenous TCR was highly expressed with a low expression of the introduced TCR, or the introduced TCR was highly expressed with a low expression of the endogenous TCR. It may be anticipated that frequent encounter with viral antigens in vivo leads to selective outgrowth of TCR-transferred dual specific T cells with high expression of the endogenous viral specific TCR but low expression of the introduced tumor specific TCR, resulting in reduced anti-leukemic reactivity. To address this issue, we generated CMVA2-specific T cells transduced with the HA-2-TCR. This resulted in dual specific cells with different TCR cell surface make up. The dual specific T cells were repetitively stimulated specifically either via their endogenous virus specific TCR or via the introduced HA-2 specific TCR. In time, the cell surface expression of the endogenous and introduced TCRs as measured with CMVA2 and HA-2A2 tetramers diverged. Repetitive stimulation of the endogenous TCR skewed the dual specific T cells towards a cell population that predominantly expressed the endogenous TCR. In contrast, repetitive stimulation of the introduced TCR skewed the cells towards T cells that predominantly expressed the introduced TCR. However, this divergence in tetramer stainings was shown to quickly revert after a single stimulation via the other TCR. To study whether this divergence was the result of a difference in TCR cell surface distribution or of selective outgrowth of different T cells, T cells were sorted that predominantly expressed either the endogenous or the introduced TCR. These cells were subsequently stimulated on the endogenous or introduced TCR, and compared regarding TCR cell surface expression and functional activity. Directly after sorting dual specific T cells preferentially expressing the endogenous TCR were still reactive against HA-2+ target cells, although the reactivity was reduced compared to cells preferentially expressing the introduced TCR. However, when restimulated on the introduced HA-2-TCR, the dual specific T cells expanded antigen specifically, and reverted within several days into cells with high expression of the introduced TCR that exerted potent HA-2 specific anti-leukemic effector functions. In conclusion, we demonstrate that these dual specific T cells are likely to persist in vivo due to repetitive encounter with viral antigens with preservation of anti-leukemic effector function. Moreover, in vivo exposure to the tumor associated antigen will further enhance the relevant specificity.


2001 ◽  
Vol 75 (17) ◽  
pp. 8283-8288 ◽  
Author(s):  
Edward J. Usherwood ◽  
Kimberley A. Ward ◽  
Marcia A. Blackman ◽  
James P. Stewart ◽  
David L. Woodland

ABSTRACT Vaccines that can reduce the load of latent gammaherpesvirus infections are eagerly sought. One attractive strategy is vaccination against latency-associated proteins, which may increase the efficiency with which T cells recognize and eliminate latently infected cells. However, due to the lack of tractable animal model systems, the effect of latent-antigen vaccination on gammaherpesvirus latency is not known. Here we use the murine gammaherpesvirus model to investigate the impact of vaccination with the latency-associated M2 antigen. As expected, vaccination had no effect on the acute lung infection. However, there was a significant reduction in the load of latently infected cells in the initial stages of the latent infection, when M2 is expressed. These data show for the first time that latent-antigen vaccination can reduce the level of latency in vivo and suggest that vaccination strategies involving other latent antigens may ultimately be successfully used to reduce the long-term latent infection.


1998 ◽  
Vol 157 (1) ◽  
pp. 63-70 ◽  
Author(s):  
JM Wilson ◽  
MM Vijayan ◽  
CJ Kennedy ◽  
GK Iwama ◽  
TW Moon

We report for the first time that beta-naphthoflavone (BNF) abolishes ACTH stimulation of cortisol production in rainbow trout (Oncorhynchus mykiss). There was significantly higher hepatic cytochrome P450 content and ethoxyresorufin O-de-ethylase and uridine-5'-diphosphoglucuronic acid transferase activities in BNF-treated fish than in sham-treated controls. BNF did not significantly affect either plasma turnover or tissue distribution of [3H]cortisol-derived radioactivity. Hepatic membrane fluidity and hepatocyte capacity for cortisol uptake were not altered by BNF as compared with the sham-treated fish. These results taken together suggest that BNF does not affect cortisol-clearance mechanisms in trout. A 3 min handling disturbance period elicited a plasma cortisol response in the sham-treated fish; however, the response in the BNF-treated fish was muted and significantly lower than in the sham fish. This in vivo response corroborates the lack of interrenal sensitivity to ACTH in vitro in the BNF-treated fish, suggesting that BNF affects the ACTH pathway in trout. Our results suggest the possibility that cytochrome P450-inducing compounds may affect cortisol dynamics by decreasing interrenal responsiveness to ACTH stimulation in fish, thereby impairing the physiological responses that are necessary for the animal to cope with the stressor.


2021 ◽  
Vol 13 ◽  
Author(s):  
Shen-Qing Zhang ◽  
Long-Long Cao ◽  
Yun-Yue Liang ◽  
Pu Wang

Clinical studies have found that some Alzheimer’s disease (AD) patients suffer from Cushing’s syndrome (CS). CS is caused by the long-term release of excess glucocorticoids (GCs) from the adrenal gland, which in turn, impair brain function and induce dementia. Thus, we investigated the mechanism of the effect of corticosterone (CORT) on the development and progression of AD in a preclinical model. Specifically, the plasma CORT levels of 9-month-old APP/PS1 Tg mice were abnormally increased, suggesting an association between GCs and AD. Long-term administration of CORT accelerated cognitive dysfunction by increasing the production and deposition of β-amyloid (Aβ). The mechanism of action of CORT treatment involved stimulation of the expression of BACE-1 and presenilin (PS) 1 in in vitro and in vivo. This observation was confirmed in mice with adrenalectomy (ADX), which had lower levels of GCs. Moreover, the glucocorticoid receptor (GR) mediated the effects of CORT on the stimulation of the expression of BACE-1 and PS1 via the PKA and CREB pathways in neuroblastoma N2a cells. In addition to these mechanisms, CORT can induce a cognitive decline in APP/PS1 Tg mice by inducing apoptosis and decreasing the differentiation of neurons.


Author(s):  
George A. F. Hendry ◽  
N. M. Atherton ◽  
Wendy Seel ◽  
Olivier Leprince

SynopsisA correlation has been firmly established, in a wide range of plants, between environmental stress, the onset of senescence, loss of viability in seeds and the development and accumulation of a stable organic free radical. On the basis of the EPR response obtained at 95 GHz (W-band) and ENDOR spectra, and comparisons with quinone radical anions, we present evidence from contrasted plant species, plant tissues and sub-cellular fractions that this stable radical originates from one or more quinones possibly, though perhaps not exclusively, associated with stressed or age-impaired photosynthetic and respiratory electron transport chains. The radical appears to be ubiquitously associated with sub-lethal stress-induced damage and with senescence and arises during the sub-cellular structural and biochemical processes associated with the final phases of metabolism prior to death. As the free radical persists for some considerable time after death, it may have value in long-term studies of seed viability and in broader areas of plant pathology and stress physiology.


2019 ◽  
Author(s):  
Sarah K. Brodnick ◽  
Jared P. Ness ◽  
Thomas J. Richner ◽  
Sanitta Thongpang ◽  
Joseph Novello ◽  
...  

AbstractThe studies described in this paper for the first time characterize the acute and chronic performance of optically transparent thin-film µECoG grids implanted on a thinned skull as both an electrophysiological complement to existing thinned skull preparation for optical recordings/manipulations, and a less invasive alternative to epidural or subdurally placed µECoG arrays. In a longitudinal chronic study, µECoG grids placed on top of a thinned skull maintain impedances comparable to epidurally placed µECoG grids that are stable for periods of at least one month. Optogenetic activation of cortex is also reliably demonstrated through the optically transparent ECoG grids acutely placed on the thinned skull. Finally, spatially distinct electrophysiological recordings were evident on µECoG electrodes placed on a thinned skull separated by 500-750µm, as assessed by stimulation evoked responses using optogenetic activation of cortex as well as invasive and epidermal stimulation of the sciatic and median nerve at chronic time points. Neural signals were collected through a thinned skull in multiple species, demonstrating potential utility in neuroscience research applications such as in vivo imaging, optogenetics, calcium imaging, and neurovascular coupling.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4877
Author(s):  
Miriam Filippi ◽  
Boris Dasen ◽  
Arnaud Scherberich

By permeabilizing the cell membrane with ultrasound and facilitating the uptake of iron oxide nanoparticles, the magneto-sonoporation (MSP) technique can be used to instantaneously label transplantable cells (like stem cells) to be visualized via magnetic resonance imaging in vivo. However, the effects of MSP on cells are still largely unexplored. Here, we applied MSP to the widely applicable adipose-derived stem cells (ASCs) for the first time and investigated its effects on the biology of those cells. Upon optimization, MSP allowed us to achieve a consistent nanoparticle uptake (in the range of 10 pg/cell) and a complete membrane resealing in few minutes. Surprisingly, this treatment altered the metabolic activity of cells and induced their differentiation towards an osteoblastic profile, as demonstrated by an increased expression of osteogenic genes and morphological changes. Histological evidence of osteogenic tissue development was collected also in 3D hydrogel constructs. These results point to a novel role of MSP in remote biophysical stimulation of cells with focus application in bone tissue repair.


Sign in / Sign up

Export Citation Format

Share Document