scholarly journals Reinforcing effect of a thin basalt fiber-reinforced polymer plywood coating

BioResources ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 2062-2078

The strengthening effect of basalt fiber-reinforced epoxy coatings was investigated with regard to their areal weight and position on the compression or tension side of plywood. Beach plywood was coated on one side with a basalt fiber-reinforced epoxy matrix. Two biaxial and one twilled fabric with areal weights of 170 g/m2, 210 g/m2, and 340 g/m2 respectively were used. The thickness of the plywood was 21 mm. The results showed the best reinforcing effect was obtained with the highest weight when mounted on the tension side of the parallel specimens. The bending strength of these specimens was improved by 15.7%. The perpendicular specimens were positively reinforced by the fiber-reinforced polymers on both the compression and tension sides. The tension reinforcement provided a higher deflection, which was further analyzed using digital image correlation. The evaluated data indicated significant displacement of the neutral axis. The impact strength of the parallel specimens was not improved by the reinforcement, but all of the reinforced perpendicular specimens were significantly strengthened.

Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2379
Author(s):  
Nick Wolter ◽  
Vinicius Carrillo Beber ◽  
Anna Sandinge ◽  
Per Blomqvist ◽  
Frederik Goethals ◽  
...  

Bisphenol F and aniline-based benzoxazine monomers were selected to fabricate basalt, glass and carbon fiber reinforced polybenzoxazine via vacuum infusion, respectively. The impacts of the type of fiber reinforcement on the resulting material properties of the fiber reinforced polymers (FRPs) were studied. FRPs exhibited a homogenous morphology with completely impregnated fibers and near-zero porosity. Carbon fiber reinforced polybenzoxazine showed the highest specific mechanical properties because of its low density and high modulus and strength. However, regarding the flammability, fire, smoke and toxicity properties, glass and basalt reinforced polybenzoxazine outperformed carbon fiber reinforced polybenzoxazine. This work offers a deeper understanding of how different types of fiber reinforcement affect polybenzoxazine-based FRPs and provides access to FRPs with inherently good fire, smoke and toxicity performance without the need for further flame retardant additives.


2020 ◽  
Vol 8 (5) ◽  
pp. 2624-2632

Strengthening and enhancing of Reinforced Concrete (RC) structural components are important to broaden its administration period, overcoming the first structure limits and to limit the impact of construction defects as well as the design defects. In this work, Fiber Reinforced Polymers (FRPs) is utilized as to strengthen RC structures. In this paper, the utilization of FRP such as Sisal, Jute, and Coir in concrete structures is being examined for its viability in upgrading structural execution both regarding strength and ductility. The structural behavior of FRP specimen is examined by experimental and numerical examination by estimating the parameters, for example, compressive strength, tensile strength, ductility, and deflection. Here, we utilized the Fuzzy Neural Network (FNN) procedure to test the strength of specimen. At the point, when compared with existing work, the proposed FNN model achieves the greatest performance in terms of all parameters for the fiber reinforced specimen under various loaded condition.


Author(s):  
MUHAMMAD ALI IMAM ◽  
ADAM M. BREISTER ◽  
ZHICHAO ZHOU ◽  
KARTHIK ANANTHARAMAN ◽  
PAVANA PRABHAKAR

2020 ◽  
Vol 23 (8) ◽  
pp. 1534-1547 ◽  
Author(s):  
Jingting Huang ◽  
Tao Li ◽  
Dayong Zhu ◽  
Peng Gao ◽  
An Zhou

This article studies the compressive behavior of concrete columns confined by different basalt fiber–reinforced polymers. A total of 30 columns were divided into 10 groups according to section shapes (circular and square), basalt fiber–reinforced polymer types (unidirectional basalt fiber–reinforced polymer, bidirectional basalt fiber–reinforced polymer, and hybrid basalt fiber–reinforced polymer/carbon fiber–reinforced polymers), and number of layers (0, 1, and 2). The test results showed that the compressive strengths of confined specimens increased by 20%–71% for circular columns and by 23%–41% for square columns. Similarly, the ultimate strains improved by 49%–296% for circular specimens and by 45%–145% for square specimens. The two-layer basalt fiber–reinforced polymer jacket had the best confinement effect, whereas the confining effect of bidirectional basalt fiber–reinforced polymer wrapping was relatively lower than that of unidirectional basalt fiber–reinforced polymer wrapping. Moreover, both the strength and ultimate strain of confined concrete improved with increasing number of basalt fiber–reinforced polymer layers. Finite element numerical models were also developed and verified by experimental results, and then the stress distributions of basalt fiber–reinforced polymer jackets and cross-sectional concrete were presented. Based on the test results and experimental data from several existing studies, modified strength and ultimate strain models were further developed for basalt fiber–reinforced polymer-confined circular and square columns.


Sign in / Sign up

Export Citation Format

Share Document