scholarly journals Fiber fines for fabricating lignocellulose films and the effect of lignin

BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 4417-4433
Author(s):  
Mohammad Pourjafar ◽  
Amir Khosravani ◽  
Rabi Behrooz

Excess lignocellulose fines in some fiber processing mills cause issues and hurt product quality. To use this type of biomaterial as a resource, surplus fines can be separated and dissolved with solvents for further transformation. Therefore, 1-butyl 3-methyl imidazolium chloride ionic liquid (IL) was used as a powerful green solvent for a rapid dissolution process. However, a low degree of polymerization (DP) of the cellulose in fines and the effects of lignin content and its structure on the process and film properties are controversial subjects. This study demonstrated that the three dimensional structure of lignin did not permit the raw bagasse fines (prior to pulping) to dissolve in the IL even after several hours. However, following decomposition of the lignin structure by pulping, the fiber fines were readily dissolved. Further, all the fabricated films from the fiber fines exhibited satisfactory strength properties, despite the fact that the cellulose had a low DP. The films from bleached fiber fines showed higher tensile strength than those containing lignin, although the cellulose chain was longer and had a higher DP for the latter. Lignin resulted in reduced transparency, and higher absorption of ultraviolet radiations, but it did not affect the surface roughness of the films.

2021 ◽  
Vol 17 (9) ◽  
pp. e1009262
Author(s):  
Eric Behle ◽  
Adélaïde Raguin

The processing of agricultural wastes towards extraction of renewable resources is recently being considered as a promising alternative to conventional biofuel production. The degradation of agricultural residues is a complex chemical process that is currently time intensive and costly. Various pre-treatment methods are being investigated to determine the subsequent modification of the material and the main obstacles in increasing the enzymatic saccharification. In this study, we present a computational model that complements the experimental approaches. We decipher how the three-dimensional structure of the substrate impacts the saccharification dynamics. We model a cell wall microfibril composed of cellulose and surrounded by hemicellulose and lignin, with various relative abundances and arrangements. This substrate is subjected to digestion by different cocktails of well characterized enzymes. The saccharification dynamics is simulated in silico using a stochastic procedure based on a Gillespie algorithm. As we additionally implement a fitting procedure that optimizes the parameters of the simulation runs, we are able to reproduce experimental saccharification time courses for corn stover. Our model highlights the synergistic action of enzymes, and confirms the linear decrease of sugar conversion when either lignin content or crystallinity of the substrate increases. Importantly, we show that considering the crystallinity of cellulose in addition to the substrate composition is essential to interpret experimental saccharification data. Finally, our findings support the hypothesis of xylan being partially crystalline.


Author(s):  
Ricardo Adaixo ◽  
João Henrique Morais-Cabral

Per–Arnt–Sim (PAS) domains are ubiquitous in nature; they are ∼130-amino-acid protein domains that adopt a fairly conserved three-dimensional structure despite their low degree of sequence homology. These domains constitute the N-terminus or, less frequently, the C-terminus of a number of proteins, where they exert regulatory functions. PAS-containing proteins generally display two or more copies of this motif. In this work, the crystallization and preliminary analysis of the PAS domains of two eukaryotic potassium channels from the ether-à-go-go (EAG) family are reported.


2018 ◽  
Vol 45 (6) ◽  
pp. 269-274
Author(s):  
V.S. Osipchik ◽  
Yu.V. Olikhova ◽  
L.Kh. Nguen ◽  
G.A. Lushcheikin ◽  
V.M. Aristov

Thermomechanical analysis, dynamic mechanical analysis, differential scanning calorimetry, and dielectric thermal analysis were used to determine the glass transition temperature of hot-curing epoxy siloxane composites. The effect of polymethylphenylsiloxane resin on the parameters of the three-dimensional structure and on the deformation and strength properties of epoxy novolac resin during curing by 4,4′-diaminodiphenylmethane was established.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950070 ◽  
Author(s):  
Tingnan Yan ◽  
Weijun Zhang ◽  
Haijun Mao ◽  
Xingyu Chen ◽  
Shuxin Bai

We investigate the effect of CaO/SiO2 (molar ratio) and B2O3 content on the structure and sintering contraction behaviors of Calcium borosilicate (CaO–B2O3–SiO2, CBS) glass-ceramic through the dilatometer and the Fourier transform infrared (FTIR) spectroscopy. The results show that the sintering-shrinkage of CBS glass-ceramics is promoted dramatically with the increase of CaO/SiO2 to 1.14, and then keeps nearly constant as the CaO/SiO2 further increases. This phenomenon is correlated with the degree of polymerization (DOP) of the Si–O network structure modulated by the CaO/SiO2, additionally, two sintering shrinkage peaks, corresponding to two-step depolymerization, are detected in the sintering-shrinkage curves of the CBS glass-ceramic as the B2O3 content is elevated to 13.6 mol%. Meanwhile, the shrinking rate of CBS glass-ceramics is increased from 8 × 10[Formula: see text] to 37 × 10[Formula: see text] min[Formula: see text] and the softening point is decreased from 736[Formula: see text]C to 691[Formula: see text]C with the increase of B2O3 content from 6.8 to 20.8 mol⋅%. This is due to the introduction of BO3 trihedral into Si–O–Si three-dimensional structure, which greatly reduces the uniformity and symmetry of the networks, inducing the decrease of the strength for the whole Si–O–Si network structures. The results obtained in this paper reveal the relationship between the glass structure and sintering behavior of the CBS glass-ceramic, which gives an avenue to improve its physical properties.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
T.D. Pollard ◽  
P. Maupin

In this paper we review some of the contributions that electron microscopy has made to the analysis of actin and myosin from nonmuscle cells. We place particular emphasis upon the limitations of the ultrastructural techniques used to study these cytoplasmic contractile proteins, because it is not widely recognized how difficult it is to preserve these elements of the cytoplasmic matrix for electron microscopy. The structure of actin filaments is well preserved for electron microscope observation by negative staining with uranyl acetate (Figure 1). In fact, to a resolution of about 3nm the three-dimensional structure of actin filaments determined by computer image processing of electron micrographs of negatively stained specimens (Moore et al., 1970) is indistinguishable from the structure revealed by X-ray diffraction of living muscle.


Author(s):  
J.L. Williams ◽  
K. Heathcote ◽  
E.J. Greer

High Voltage Electron Microscope already offers exciting experimental possibilities to Biologists and Materials Scientists because the increased specimen thickness allows direct observation of three dimensional structure and dynamic experiments on effectively bulk specimens. This microscope is designed to give maximum accessibility and space in the specimen region for the special stages which are required. At the same time it provides an ease of operation similar to a conventional instrument.


Author(s):  
G. E. Tyson ◽  
M. J. Song

Natural populations of the brine shrimp, Artemia, may possess spirochete- infected animals in low numbers. The ultrastructure of Artemia's spirochete has been described by conventional transmission electron microscopy. In infected shrimp, spirochetal cells were abundant in the blood and also occurred intra- and extracellularly in the three organs examined, i.e. the maxillary gland (segmental excretory organ), the integument, and certain muscles The efferent-tubule region of the maxillary gland possessed a distinctive lesion comprised of a group of spirochetes, together with numerous small vesicles, situated in a cave-like indentation of the base of the tubule epithelium. in some instances the basal lamina at a lesion site was clearly discontinuous. High-voltage electron microscopy has now been used to study lesions of the efferent tubule, with the aim of understanding better their three-dimensional structure.Tissue from one maxillary gland of an infected, adult, female brine shrimp was used for HVEM study.


Author(s):  
Jerome J. Paulin

Within the past decade it has become apparent that HVEM offers the biologist a means to explore the three-dimensional structure of cells and/or organelles. Stereo-imaging of thick sections (e.g. 0.25-10 μm) not only reveals anatomical features of cellular components, but also reduces errors of interpretation associated with overlap of structures seen in thick sections. Concomitant with stereo-imaging techniques conventional serial Sectioning methods developed with thin sections have been adopted to serial thick sections (≥ 0.25 μm). Three-dimensional reconstructions of the chondriome of several species of trypanosomatid flagellates have been made from tracings of mitochondrial profiles on cellulose acetate sheets. The sheets are flooded with acetone, gluing them together, and the model sawed from the composite and redrawn.The extensive mitochondrial reticulum can be seen in consecutive thick sections of (0.25 μm thick) Crithidia fasciculata (Figs. 1-2). Profiles of the mitochondrion are distinguishable from the anterior apex of the cell (small arrow, Fig. 1) to the posterior pole (small arrow, Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document