scholarly journals Analysis of neodymium-doped yttrium-aluminum-garnet laser and experimental prospects for cutting micro-thin black walnut veneers in industry

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 2416-2432
Author(s):  
Bakary S. Doumbia ◽  
Chunmei Yang ◽  
Yan Ma ◽  
Ting Jiang ◽  
Xiang Li ◽  
...  

By structurally and practically analyzing the use of Nd: YAG laser for cutting black walnut veneer, this study considered practical and environmental concerns regarding the global warming protection measures. A numerical model of laser wood veneer cutting was based on the relation between process parameters and the material thickness. A pulsed Nd: YAG was used to cut black walnut veneer of 0.3 mm thickness under different machining conditions regarding laser power and cutting speed to study the cut kerf width. An analysis of variance was conducted to test the significance of machining parameters. The parameters studied were laser power, cutting speed, kerf width, cut surface, safety, and eco-friendliness. The results showed that the kerf width decreased significantly with increased cut speed and, inversely, by laser output power. An efficient cut with a narrow kerf, clean and smooth, with less burn, was possible at laser cutting speeds of 2.5, 5.0, and 5.5 mm/s with kerf widths of 0.544, 0.69, 0.62 mm, respectively. As multiple factors affect the micro-thin wood laser cutting process, finding the optimal process parameters is crucial for successful machining with no burn effect.

2015 ◽  
Vol 88 (1) ◽  
pp. 125-137 ◽  
Author(s):  
Shib Shankar Banerjee ◽  
Anil K. Bhowmick

ABSTRACT The application of the low-power CO2 laser-cutting process to fluoroelastomer (FKM), polyamide 6 (PA6), PA6/FKM thermoplastic elastomers (TPEs), and their thermoplastic vulcanizate (TPV) is reported. The main laser process parameters studied were laser power, cutting speed, and material thickness. The value of the top and bottom widths of the slit that were formed during laser cutting (kerf width), melted transverse area, and melted volume per unit time were measured and analyzed. Interestingly, TPE showed a smaller melted area and melted volume per unit time when compared with those values with PA6. Dynamic vulcanization further decreased these values. For example, the melted areas of PA6 and TPE were 510 × 10−3 mm2 and 305 × 10−3 mm2, respectively, which reduced to 238 × 10−3 mm2 for TPV at 40 W laser power. FKM showed the lowest value (melted area of 180 × 10−3 mm2). In addition, the output quality of the cut surface was examined by measuring the root mean square (RMS) roughness of the cut edges and heat-affected zone (HAZ). The obtained results indicated that the dimension of the HAZ and RMS roughness largely decreased in TPE when compared with PA6. For example, the HAZ of PA6 was 700 μm, which decreased to 230 μm for TPE at 40 W laser power. On the other hand, HAZ was nonexistent for FKM. Infrared spectroscopic analysis showed that there was no structural change of TPE or pristine polymers after applying the low-power CO2 laser on the surface of materials. CO2 laser cutting will be a new technique in this industry, and this analysis will assist the manufacturing industry to choose a suitable laser system with exhaustive information of process parameters for cutting or machining of rubber, TPEs, and TPVs.


2018 ◽  
Vol 53 (11) ◽  
pp. 1459-1473 ◽  
Author(s):  
Shiva Dayal Rao B ◽  
Abhijeet Sethi ◽  
Alok Kumar Das

In the present investigation, a continuous wave fiber laser with maximum power of 400 W was used to cut a glass fiber reinforced plastic sheet of 4.56 mm thickness using Nitrogen as assisting gas. The influence processing parameters such as laser irradiance, gas pressure, and cutting speed on the cut surface quality were investigated by using response surface methodology. The different responses of laser cut surface such as upper kerf width, taper percentage along the cut depth, and heat-affected zone on the top surface were measured to analyze the influence of input process parameters on the responses. A statistical analysis on the obtained results was conducted and found that the optimum values of different input process parameters were laser irradiance: 8.28 × 105 watt/cm2, cutting speed: 600 mm/min and assisting gas pressure: 7.84 bar. The corresponding values of responses were upper kerf width: 177.4 µm, taper 0.73%, and heat-affected zone on top surface: 109.23 µm. The confirmation experiments were conducted with the obtained optimum parameter setting and observed that the predicted values and experimental values for upper kerf width, taper percentage and top surface heat-affected zone were within the error limits of 2.52%, 1.84%, and 0.45%, respectively. Furthermore, damages like loose fibers, interlayer fractures, evaporation of matrix material and fiber breakages were observed.


2016 ◽  
Vol 78 (7) ◽  
Author(s):  
Abdul Fattah Mohamad Tahir ◽  
Ahmad Razelan Rashid

Development of new material known as Ultra High Strength Steel (UHSS) able to improve the vehicle mass thus reflecting better fuel consumption. Transformation into high strength steel has been a significant drawback in trimming the UHSS into its final shape thus laser cutting process appeared to be the solution. This study emphasizes the relationship between Carbon Dioxide (CO2) laser cutting input parameters on 22MnB5 boron steel focusing on the kerf width formation and Heat Affected Zone (HAZ). Experimental research with variation of laser power, cutting speed and assisted gas pressure were executed to evaluate the responses. Metrological and metallographic evaluation of the responses were made on the outputs that are the kerf width formation and HAZ.  Positive correlation for power and negative interaction for cutting speed were found as the major factors on formation of the kerf. For the HAZ formation, thicker HAZ were formed as bigger laser power were applied to the material. Cutting speed and gas pressure does not greatly influence the HAZ formation for 22MnB5 boron steel.


Author(s):  
Asonganyi Ateh Atayo ◽  
Mahmood Bashir ◽  
Muhammad Mustafizur Rahman ◽  
Rajeev Nair

Abstract Stainless steel 304 is one of the most commonly used steel types for corrosion resistance applications, but higher melting point is a limitation in industries from a manufacturing point of view. The non-conventional and subtractive manufacturing technique of laser cutting — a beam directed method, is suitable for these applications. A Gaussian laser beam is directed at the material that melts, burns, vaporizes, or is blown away by a jet of gas, leaving a fine edge with good surface finish. In this study, a numerical study was performed to study the multi-physical fluid processes of laser cutting. Towards this, modeling was performed using 1.2 mm thick austenitic stainless-steel coupons that was cut using a continuous width neodymium-doped yttrium aluminum garnet (CW Nd: YAG) laser. The results showed smoother surface cut, little dross formation, lower temperature rise in heat affected zones, and less finish time at a cutting speed of 8m/min, higher laser power above 1000 W, gas pressure of 11 bars, and focus distance of −1.0 mm. It was observed that an increase in laser power at a faster cutting speed led to an increase in kerf width, reduction in dross formation, lower temperature rises in heat affected zones and a reduced finish time. The simulation results were compared with published experimental data and found to be well within a maximum difference of 15%.


2013 ◽  
Vol 664 ◽  
pp. 811-816 ◽  
Author(s):  
Imed Miraoui ◽  
Mohamed Boujelbene ◽  
Emin Bayraktar

Laser cutting of materials is becoming the preferred method of cutting. It has many advantages over conventional machining techniques such as better quality of cuts, quick and accurate cutting. The objective of this work is to investigate the effect of the main input laser cutting parameters, laser power and cutting speed, on the microhardness of stainless steel sheets obtained by CO2 laser cutting. The experimental tests were performed at various laser powers and cutting speeds. The cut surface was studied based on microhardness depth profiles beneath the machined surface. In order to investigate the metallurgical alterations beneath the cut surface, the microstructure was observed by using scanning electron microscopy. The results show that the microhardness and the surface microstructure are affected by laser cutting. Laser cutting leads to the formation of periodic striations and cracks. Also the main parameters of cutting, laser power and cutting speed, have an effect on surface microstructure and microhardness.


Author(s):  
I Uslan

The kerf width size variation along a laser-cut section lowers the end product quality significantly. In the present study, CO2 laser cutting of mild steel is considered and the influence of laser power and cutting speed variations on the kerf width size is examined. A lump parameter analysis is introduced when predicting the kerf width size and an experiment is conducted to measure the kerf size and its variation during the cutting process. It is found that the power intensity at the workpiece surface influences significantly the kerf width size. The variation in the power intensity results in considerable variation in the kerf size during the cutting, which is more pronounced at lower intensities.


2021 ◽  
Author(s):  
Eldinar Oktatian ◽  
Cucuk Nur Rosyidi ◽  
Eko Pujiyanto

Abstract Polymethylmethacrylate (acrylic) has some important characteristics such as light weight, impact-resistant, and high durability. In a manufacturing industry, acrylic has been widely used as the basic material for billboard products, decorative lights, canopies, and room decorations. This research aims at determining the optimal process parameters of the laser cutting process. The experiment was conducted using multi-response Taguchi method involving four responses, namely processing time, dimensional accuracy, surface roughness, and carbon emissions. The Taguchi method is used to determine the Signal to Noise (SNR) for each response. The Grey Relational Analysis (GRA) method is performed by calculating the normalized weight of SNR for each response to determine the optimal setting level of each factor applied in the experiment. The Response Surface Methodology (RSM) was applied to determine the mathematical model based on the results of the experiment to allow the multi-objective optimization and determine the exact value of optimal process parameters which simultaneously compromise all the responses. Based on the results of the experiment, the optimal process parameters are 65% of the laser power, 4 mm/s of the cutting speed, and 4 mm of nozzle distance. Whereas from the results multi-objective optimization, the optimal process parameters are 75% of laser power, 5.9 mm/s of cutting speed, and 3mm of nozzle distance.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Imed Miraoui ◽  
Mohamed Boujelbene ◽  
Mouna Zaied

The thermal effect of CO2high-power laser cutting on cut surface of steel plates is investigated. The effect of the input laser cutting parameters on the melted zone depth (MZ), the heat affected zone depth (HAZ), and the microhardness beneath the cut surface is analyzed. A mathematical model is developed to relate the output process parameters to the input laser cutting parameters. Three input process parameters such as laser beam diameter, cutting speed, and laser power are investigated. Mathematical models for the melted zone and the heat affected zone depth are developed by using design of experiment approach (DOE). The results indicate that the input laser cutting parameters have major effect on melted zone, heat affected zone, and microhardness beneath cut surface. The MZ depth, the HAZ depth, and the microhardness beneath cut surface increase as laser power increases, but they decrease with increasing cutting speed. Laser beam diameter has a negligible effect on HAZ depth but it has a remarkable effect on MZ depth and HAZ microhardness. The melted zone depth and the heat affected zone depth can be reduced by increasing laser cutting speed and decreasing laser power and laser beam diameter.


Author(s):  
C. Divya ◽  
L. Suvarna Raju ◽  
B. Singaravel

Turning process is a primary process in engineering industries and optimization of process parameters enhance the machining performance. Inconel 718 is a nickel-based superalloy, widely found applications in the manufacturing of blades, sheets and discs in aircraft engines and rocket engines. It provides toughness at low temperature, with stand high mechanical stresses at elevated temperature and creep resistance. In this work, turning process is carried out on Inconel 718 with micro whole textured cutting inserts filled with solid lubricants. Three different solid lubricants are used namely molybdenum-di-sulfide (MoS2), tungsten-di-sulfide (WS2) and calcium-di-fluoride (CaF2). Experiments are performed as per L9 orthogonal array. Statistical approaches such as orthogonal array, Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) are used to find the importance and effects of machining parameters. In this study, input parameters included are feed, cutting speed and depth of cut and output parameter includes surface roughness. Optimization of process parameters is carried out and the significance is estimated. The result suggested that WS2 followed by MoS2 and CaF2 given good surface finish value. Also, solid lubricant in machining enhances the sustainability in manufacturing.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ekhaesomi A Agbonoga ◽  
Oyewole Adedipe ◽  
Uzoma G Okoro ◽  
Fidelis J Usman ◽  
Kafayat T Obanimomo ◽  
...  

This study investigated the effects of process parameters of plasma arc cutting (PAC) of low carbon steel material using analysis of variance. Three process parameters, cutting speed, cutting current and gas pressure were considered and experiments were conducted based on response surface methodology (RSM) via the box-Behnken approach. Process responses viz. surface roughness (Ra) and kerf width of cut surface were measured for each experimental run. Analysis of Variance (ANOVA) was performed to get the contribution of process parameters on responses. Cutting current has the most significant effect of 33.43% on the surface roughness and gas pressure has the most significant effect on  kerf width of  41.99% . For minimum surface roughness and minimum kerf width, process parameters were optimized using the RSM. Keywords: Cutting speed, cutting current, gas pressure,   surface roughness, kerf width


Sign in / Sign up

Export Citation Format

Share Document