scholarly journals Dimensional stability performance of fire retardant treated veneer-oriented strandboard composites

BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 308-316
Author(s):  
Zeki Candan ◽  
Nadir Ayrilmis ◽  
Turgay Akbulut

This study investigated dimensional stability properties of oriented strandboard (OSB) panels faced with fire retardant treated (FRT) veneers. The beech (Fagus orientalis Lipsky) veneers were treated with monoammonium phosphate (MAP), diammonium phosphate (DAP), lime water (LW), and a borax/boric acid (BX/BA) (1:1) mixture. Dimensional stability tests were performed according to ASTM D-1037. The results revealed that facing veneers impregnated with fire-retardant chemicals had significant effects on the linear expansion (LE) properties. The lowest LE value was obtained from the panels faced with MAP treated veneers, while the highest LE value was found in the panels faced with BX/BA treated veneers. The FRT treated veneer facing technique also affected the thickness swelling (TS) properties of the OSB panels. The panels faced with LW treated veneers had the highest TS, whereas the panels faced with MAP treated veneers had the lowest TS values.

2020 ◽  
Vol 2 (2) ◽  
pp. 117-122

Effects of various fire retardant chemicals on fire and technological properties of laboratory made oriented strandboards (OSBs) were investigated. Aspen chips were used in the production of OSB panels. An exterior liquid phenol formaldehyde resin with 47 percent solid content was used as adhesive. There was no addition of any hardener and filling materials into resin in the OSB manufacturing. Boron compounds such as borax and boric acid, and phospate compounds such as monoammonium phosphate and diammonium phospahate were used as fire retardant chemicals in the OSB panels. An exterior liquid phenol formaldehyde resin was used as adhesive. The chemicals in powder form were added into the resin blender at contents of 2%, 4%, and 6% based on oven-dry wood weight. The OSB panels containing borax had the highest thickness swelling, followed by the panels containing boric acid, monoammonium phospahate, and diammonium phosphate, respectively. Increasing the content of these chemicals in the OSB resulted in greater thickness swelling. For the mechanical properties, the chemicals can be used up to oven dry particle weight of 6% in the panels at humid and dry conditions because of the fact that they met the standard values of mechanical properties given in TS EN 300 for types of OSB/3 (exterior type. Fire resistance of the panels was improved with increased chemical content in the panels.


2019 ◽  
Vol 43 (5) ◽  
Author(s):  
Emerson Gomes Milagres ◽  
Raiana Augusta Grandal Savino Barbosa ◽  
Karine Fernandes Caiafa ◽  
Gabriel Soares Lopes Gomes ◽  
Tatiana Aurora Condezo Castro ◽  
...  

ABSTRACT The objective of this work was to determine the properties of particleboard panels made of “in natura” sugarcane bagasse particles, heated at 250 °C for 5 minutes. Various particle proportions were utilized to produce the panels and their properties were compared with that of a panel made of Pinus sp. The panels were produced with 8% tannin formaldehyde adhesive, and 0.5% paraffin emulsion, being pressed at 32 kgf.cm-2 for 10 minutes at 180 ° C. It was determined the basic density of the “in natura” and heat-treated particles, their chemical composition, as well as the compression ratio necessary to obtain panels with density equal to 0.75 g.cm-3. The basic density of the panels, hygroscopic equilibrium humidity, thickness swelling, linear expansion, water vapor adsorption, modulus of elasticity and rupture, perpendicular traction, screw pullout, and Janka hardness were determined. The basic densities of Pinus particles and sugarcane bagasse without and with heat treatment were 0.46, 0.27 and 0.30 g.cm-3, respectively. The average specific mass of the panels was 0.74 g.cm-3 with no significant difference between them. Generally, panels made of sugarcane particles were less hygroscopic and dimensionally more stable than panels made of Pinus particles. However, the perpendicular tensile strength, screw pullout and Janka hardness of these panels were higher than for the Pinus panels. The heat treatment of sugarcane bagasse particles resulted in better mechanical properties of perpendicular traction and Janka hardness. In general, the panels are within the limits set by ANSI A208.1. It is therefore possible to replace panels made of Pinus particles for the ones made of sugarcane bagasse, provided that at least 25% of the particles are heat treated for 5 minutes at 250 ° C.


2014 ◽  
Vol 980 ◽  
pp. 28-32
Author(s):  
Kiew Kwong Siong ◽  
Soon Kok Heng ◽  
Sinin Hamdan ◽  
Moaz Mohsin ◽  
Akshay Kakar ◽  
...  

O-MMT treated unsaturated polyester based hybrid composites were prepared using keratin fiber obtained from chicken feathers. Fibers of similar dimension were selected to fabricate composites through hand lay-up method. The preparation and dimensional stability properties of keratin fiber as reinforcements in composites is outlined in this paper. Varying O-MMT contents in nancomposites is performed to investigate the effects on the dimensional stability (water absorption and thickness swelling) of the composites. Results indicated that increasing fiber content deteriorates dimensional stability of the composites and composites. However, improvements in dimensional stability of the keratin fibercomposites were observed with O-MMT. O-MMT treatment reduces the water absorption and thickness swelling, especially at 5wt% of O-MMT concentrationat all range of fiber content. At 5wt% concentration of O-MMt, 10wt% keratin fiber content marks the lowest water absorption and thickness swelling with rate of 0.65% and 1.93%, respectively. Adopting 10wt% of keratin fiber at 5wt% of O-MMT can be utilized for application requiring high dimensional stability.


2011 ◽  
Vol 341-342 ◽  
pp. 80-84 ◽  
Author(s):  
Yu Bo Chai ◽  
Jun Liang Liu ◽  
Xing Zhen

In order to improve the dimensional stability, mechanical properties and fire resistance of the wood from Cryptomeria fortunei, the melamine-urea-formaldehyde (MUF) resin and the mixture of MUF/boric acid/borax (MBB) were prepared and used as the wood modification solution. Results show that both the MUF resin and the MBB solutions exhibit good permeability to wood. Under the same treatment conditions, the weight percent gains (WPG) of treated wood increases with the increasing concentration of modification solutions. MUF and MBB modification solutions can effectively enhance the dimensional stability, MOR, MOE and fire resistance of wood. Compared with MBB treated wood, MUF treated wood exhibits higher MOR and dimensional stability. The MBB treated wood has higher MOE and fire resistance than MUF treated wood.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Iwona Zarzyka

The work focuses on research related to determination of application possibility of new, ecofriendly boroorganic polyols in rigid polyurethane foams production. Polyols were obtained from hydroxypropyl urea derivatives esterified with boric acid and propylene carbonate. The influence of esterification type on properties of polyols and next on polyurethane foams properties was determined. Nitrogen and boron impacts on the foams’ properties were discussed, for instance, on their physical, mechanical, and electric properties. Boron presence causes improvement of dimensional stability and thermal stability of polyurethane foams. They can be applied even at temperature 150°C. Unfortunately, introducing boron in polyurethanes foams affects deterioration of their water absorption, which increases as compared to the foams that do not contain boron. However, presence of both boron and nitrogen determines the decrease of the foams combustibility. Main impact on the decrease combustibility of the obtained foams has nitrogen presence, but in case of proper boron and nitrogen ratio their synergic activity on the combustibility decrease can be easily seen.


Sign in / Sign up

Export Citation Format

Share Document