scholarly journals Porcine Adiponectin Receptor 1 Transgene Resists High-fat/Sucrose Diet-Induced Weight Gain, Hepatosteatosis and Insulin Resistance in Mice

2013 ◽  
Vol 62 (4) ◽  
pp. 347-360 ◽  
Author(s):  
Bing-Hsien Liu ◽  
Yuan-Yu Lin ◽  
Ya-Chin Wang ◽  
Chao-Wei Huang ◽  
Chih-Chien Chen ◽  
...  
2007 ◽  
Vol 97 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Patricia Pérez-Matute ◽  
Nerea Pérez-Echarri ◽  
J. Alfredo Martínez ◽  
Amelia Marti ◽  
María J. Moreno-Aliaga

n-3 PUFA have shown potential anti-obesity and insulin-sensitising properties. However, the mechanisms involved are not clearly established. The aim of the present study was to assess the effects of EPA administration, one of the n-3 PUFA, on body-weight gain and adiposity in rats fed on a standard or a high-fat (cafeteria) diet. The actions on white adipose tissue lipolysis, apoptosis and on several genes related to obesity and insulin resistance were also studied. Control and cafeteria-induced overweight male Wistar rats were assigned into two subgroups, one of them daily received EPA ethyl ester (1 g/kg) for 5 weeks by oral administration. The high-fat diet induced a very significant increase in both body weight and fat mass. Rats fed with the cafeteria diet and orally treated with EPA showed a marginally lower body-weight gain (P = 0·09), a decrease in food intake (P < 0·01) and an increase in leptin production (P < 0·05). EPA administration reduced retroperitoneal adipose tissue weight (P < 0·05) which could be secondary to the inhibition of the adipogenic transcription factor PPARγ gene expression (P < 0·001), and also to the increase in apoptosis (P < 0·05) found in rats fed with a control diet. TNFα gene expression was significantly increased (P < 0·05) by the cafeteria diet, while EPA treatment was able to prevent (P < 0·01) the rise in this inflammatory cytokine. Adiposity-corrected adiponectin plasma levels were increased by EPA. These actions on both TNFα and adiponectin could explain the beneficial effects of EPA on insulin resistance induced by the cafeteria diet.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Varunkumar G Pandey ◽  
Lars Bellner ◽  
Victor Garcia ◽  
Joseph Schragenheim ◽  
Andrew Cohen ◽  
...  

20-HETE (20-Hydroxyeicosatetraenoic acid) is a cytochrome P450 ω-hydroxylase metabolite of arachidonic acid that promotes endothelial dysfunction, microvascular remodeling and hypertension. Previous studies have shown that urinary 20-HETE levels correlate with BMI and plasma insulin levels. However, there is no direct evidence for the role of 20-HETE in the regulation of glucose metabolism, obesity and type 2 diabetes mellitus. In this study we examined the effect of 20-SOLA (2,5,8,11,14,17-hexaoxanonadecan-19-yl-20-hydroxyeicosa-6(Z),15(Z)-dienoate), a water-soluble 20-HETE antagonist, on blood pressure, weight gain and blood glucose in Cyp4a14 knockout (Cyp4a14-/-) mice fed high-fat diet (HFD). The Cyp4a14-/- male mice exhibit high vascular 20-HETE levels and display 20-HETE-dependent hypertension. There was no difference in weight gain and fasting blood glucose between Cyp4a14-/- and wild type (WT) on regular chow. When subjected to HFD for 15 weeks, a significant increase in weight was observed in Cyp4a14-/- as compared to WT mice (56.5±3.45 vs. 30.2±0.7g, p<0.05). Administration of 20-SOLA (10mg/kg/day in drinking water) significantly attenuated the weight gain (28.7±1.47g, p<0.05) and normalized blood pressure in Cyp4a14-/- mice on HFD (116±0.3 vs. 172.7±4.6mmHg, p<0.05). HFD fed Cyp4a14-/- mice exhibited hyperglycemia as opposed to normal glucose levels in WT on a HFD (154±1.9 vs. 96.3±3.0 mg/dL, p<0.05). 20-SOLA prevented the HFD-induced hyperglycemia in Cyp4a14-/- mice (91±8mg/dL, p<0.05). Plasma insulin levels were markedly high in Cyp4a14-/- mice vs. WT on HFD (2.66±0.7 vs. 0.58±0.18ng/mL, p<0.05); corrected by the treatment with 20-SOLA (0.69±0.09 ng/mL, p<0.05). Importantly, glucose and insulin tolerance tests showed impaired glucose homeostasis and insulin resistance in Cyp4a14-/- mice on HFD; ameliorated by treatment with 20-SOLA. This novel finding that blockade of 20-HETE actions by 20-SOLA prevents HFD-induced obesity and restores glucose homeostasis in Cyp4a14-/- mice suggests that 20-HETE contributes to obesity, hyperglycemia and insulin resistance in HFD induced metabolic disorder. The molecular mechanisms underlying 20-HETE mediated metabolic dysfunction are being currently explored.


Cells ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 249
Author(s):  
Jong Ryeal Hahm ◽  
Myeung Hoon Jo ◽  
Rahat Ullah ◽  
Min Woo Kim ◽  
Myeong Ok Kim

Oxidative stress and insulin resistance play major roles in numerous neurodegenerative diseases, including Alzheimer’s disease (AD). A high-fat diet induces obesity-associated oxidative stress, neuronal insulin resistance, microglial activation, and neuroinflammation, which are considered important risk factors for neurodegeneration. Obesity-related metabolic dysfunction is a risk factor for cognitive decline. The present study aimed to elucidate whether chronic consumption of a high-fat diet (HFD; 24 weeks) can induce insulin resistance, neuroinflammation, and amyloid beta (Aβ) deposition in mouse brains. Male C57BL/6N mice were used for a high-fat diet (HFD)-induced pre-clinical model of obesity. The protein expression levels were examined via Western blot, immunofluorescence, and the behavior analysis was performed using the Morris water maze test. To obtain metabolic parameters, insulin sensitivity and glucose tolerance tests were performed. We found that metabolic perturbations from the chronic consumption of HFD elevated neuronal oxidative stress and insulin resistance through adiponectin receptor (AdipoR1) suppression in HFD-fed mice. Similarly, our in vitro results also indicated that knockdown of AdipoR1 in the embryonic mouse hippocampal cell line mHippoE-14 leads to increased oxidative stress in neurons. In addition, HFD markedly increased neuroinflammatory markers’ glial activation in the cortex and hippocampus regions of HFD mouse brains. More importantly, we observed that AdipoR1 suppression increased the amyloidogenic pathway both in vivo and in vitro. Furthermore, deregulated synaptic proteins and behavioral deficits were observed in the HFD mouse brains. Taken together, our findings suggest that excessive consumption of an HFD has a profound impact on brain function, which involves the acceleration of cognitive impairment due to increased obesity-associated oxidative stress, insulin resistance, and neuroinflammation, which ultimately may cause early onset of Alzheimer’s pathology via the suppression of AdipoR1 signaling in the brain.


2019 ◽  
Vol 7 (1) ◽  
pp. e000783 ◽  
Author(s):  
Liang Xu ◽  
Naoto Nagata ◽  
Guanliang Chen ◽  
Mayumi Nagashimada ◽  
Fen Zhuge ◽  
...  

ObjectiveWe reported previously that empagliflozin—a sodium-glucose cotransporter (SGLT) 2 inhibitor—exhibited preventive effects against obesity. However, it was difficult to extrapolate these results to human subjects. Here, we performed a therapeutic study, which is more relevant to clinical situations in humans, to investigate antiobesity effects of empagliflozin and illustrate the mechanism underlying empagliflozin-mediated enhanced fat browning in obese mice.Research design and methodsAfter 8 weeks on a high-fat diet (HFD), C57BL/6J mice exhibited obesity, accompanied by insulin resistance and low-grade chronic inflammation. Cohorts of obese mice were continued on the HFD for an additional 8-week treatment period with or without empagliflozin.ResultsTreatment with empagliflozin for 8 weeks markedly increased glucose excretion in urine, and suppressed HFD-induced weight gain, insulin resistance and hepatic steatosis. Notably, empagliflozin enhanced oxygen consumption and carbon dioxide production, leading to increased energy expenditure. Consistently, the level of uncoupling protein 1 expression was increased in both brown and white (WAT) adipose tissues of empagliflozin-treated mice. Furthermore, empagliflozin decreased plasma levels of interleukin (IL)-6 and monocyte chemoattractant protein-1, but increased plasma levels of IL-33 and adiponectin in obese mice. Finally, we found that empagliflozin reduced M1-polarized macrophage accumulation, while inducing the anti-inflammatory M2 phenotype of macrophages in the WAT and liver, thereby attenuating obesity-related chronic inflammation.ConclusionsTreatment with empagliflozin attenuated weight gain by increasing energy expenditure and adipose tissue browning, and alleviated obesity-associated inflammation and insulin resistance by alternative macrophage activation in the WAT and liver of obese mice.


2007 ◽  
Vol 293 (1) ◽  
pp. E31-E41 ◽  
Author(s):  
Robert C. Noland ◽  
John P. Thyfault ◽  
Sarah T. Henes ◽  
Brian R. Whitfield ◽  
Tracey L. Woodlief ◽  
...  

Elevated oxidative capacity, such as occurs via endurance exercise training, is believed to protect against the development of obesity and diabetes. Rats bred both for low (LCR)- and high (HCR)-capacity endurance running provide a genetic model with inherent differences in aerobic capacity that allows for the testing of this supposition without the confounding effects of a training stimulus. The purpose of this investigation was to determine the effects of a high-fat diet (HFD) on weight gain patterns, insulin sensitivity, and fatty acid oxidative capacity in LCR and HCR male rats in the untrained state. Results indicate chow-fed LCR rats were heavier, hypertriglyceridemic, less insulin sensitive, and had lower skeletal muscle oxidative capacity compared with HCR rats. Upon exposure to an HFD, LCR rats gained more weight and fat mass, and their insulin resistant condition was exacerbated, despite consuming similar amounts of metabolizable energy as chow-fed controls. These metabolic variables remained unaltered in HCR rats. The HFD increased skeletal muscle oxidative capacity similarly in both strains, whereas hepatic oxidative capacity was diminished only in LCR rats. These results suggest that LCR rats are predisposed to obesity and that expansion of skeletal muscle oxidative capacity does not prevent excess weight gain or the exacerbation of insulin resistance on an HFD. Elevated basal skeletal muscle oxidative capacity and the ability to preserve liver oxidative capacity may protect HCR rats from HFD-induced obesity and insulin resistance.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Tieqiao Wang ◽  
Qiaomin Wu ◽  
Tingqi Zhao

Kaempferol is a dietary flavanol that regulates cellular lipid and glucose metabolism. Its mechanism of action in preventing hepatic steatosis and obesity-related disorders has yet to be clarified. The purpose of this research was to examine kaempferol’s antiobesity effects in high-fat diet- (HFD-) fed mice and to investigate its impact on their gut microbiota. Using a completely randomized design, 30 mice were equally assigned to a control group, receiving a low-fat diet, an HFD group, receiving a high-fat diet, and an HFD+kaempferol group, receiving a high-fat diet and kaempferol doses of 200 mg/kg in the diet. After eight weeks, the HFD mice displayed substantial body and liver weight gain and high blood glucose and serum cholesterol levels. However, treatment with kaempferol moderated body and liver weight gain and elevation of blood glucose and serum cholesterol and triglyceride levels. Examination of 16S ribosomal RNA showed that HFD mice exhibited decreased microbial diversity, but kaempferol treatment maintained it to nearly the same levels as those in the control group. In conclusion, kaempferol can protect against obesity and insulin resistance in mice on a high-fat diet, partly through regulating their gut microbiota and moderating the decrease in insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document