scholarly journals [Young Scientist Award Secondary Examination] [Behavior] [Live Imaging] [Physiology] [Reproductive Technology] [Gene Engineering] [Pluripotent Stem Cells, Implantation] [Genetics] [Animal Models for Diseases] [International Session] [Experimental Technology, Facility] [Infectious Diseases, Immunology]

2013 ◽  
Vol 62 (Supplement) ◽  
pp. S39-S83
Development ◽  
2016 ◽  
Vol 143 (16) ◽  
pp. 2958-2964 ◽  
Author(s):  
Shin Kobayashi ◽  
Yusuke Hosoi ◽  
Hirosuke Shiura ◽  
Kazuo Yamagata ◽  
Saori Takahashi ◽  
...  

Author(s):  
Dragana Miloradovic ◽  
Dragica Pavlovic ◽  
Marina Gazdic Jankovic ◽  
Sandra Nikolic ◽  
Milos Papic ◽  
...  

For a long time, animal models were used to mimic human biology and diseases. However, animal models are not an ideal solution due to numerous interspecies differences between humans and animals. New technologies, such as human-induced pluripotent stem cells and three-dimensional (3D) cultures such as organoids, represent promising solutions for replacing, refining, and reducing animal models. The capacity of organoids to differentiate, self-organize, and form specific, complex, biologically suitable structures makes them excellent in vitro models of development and disease pathogenesis, as well as drug-screening platforms. Despite significant potential health advantages, further studies and considerable nuances are necessary before their clinical use. This article summarizes the definition of embryoids, gastruloids, and organoids and clarifies their appliance as models for early development, diseases, environmental pollution, drug screening, and bioinformatics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chengyi Tu ◽  
Nathan J. Cunningham ◽  
Mao Zhang ◽  
Joseph C. Wu

Evaluation of potential vascular injury is an essential part of the safety study during pharmaceutical development. Vascular liability issues are important causes of drug termination during preclinical investigations. Currently, preclinical assessment of vascular toxicity primarily relies on the use of animal models. However, accumulating evidence indicates a significant discrepancy between animal toxicity and human toxicity, casting doubt on the clinical relevance of animal models for such safety studies. While the causes of this discrepancy are expected to be multifactorial, species differences are likely a key factor. Consequently, a human-based model is a desirable solution to this problem, which has been made possible by the advent of human induced pluripotent stem cells (iPSCs). In particular, recent advances in the field now allow the efficient generation of a variety of vascular cells (e.g., endothelial cells, smooth muscle cells, and pericytes) from iPSCs. Using these cells, different vascular models have been established, ranging from simple 2D cultures to highly sophisticated vascular organoids and microfluidic devices. Toxicity testing using these models can recapitulate key aspects of vascular pathology on molecular (e.g., secretion of proinflammatory cytokines), cellular (e.g., cell apoptosis), and in some cases, tissue (e.g., endothelium barrier dysfunction) levels. These encouraging data provide the rationale for continuing efforts in the exploration, optimization, and validation of the iPSC technology in vascular toxicology.


2019 ◽  
Vol 41 ◽  
pp. 101599 ◽  
Author(s):  
Candice Ashmore-Harris ◽  
Samuel JI Blackford ◽  
Benjamin Grimsdell ◽  
Ewelina Kurtys ◽  
Marlies C Glatz ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Joseph M. Schulz

An estimated 6.2 million Americans aged 65 or older are currently living with Alzheimer’s disease (AD), a neurodegenerative disease that disrupts an individual’s ability to function independently through the degeneration of key regions in the brain, including but not limited to the hippocampus, the prefrontal cortex, and the motor cortex. The cause of this degeneration is not known, but research has found two proteins that undergo posttranslational modifications: tau, a protein concentrated in the axons of neurons, and amyloid precursor protein (APP), a protein concentrated near the synapse. Through mechanisms that have yet to be elucidated, the accumulation of these two proteins in their abnormal aggregate forms leads to the neurodegeneration that is characteristic of AD. Until the invention of induced pluripotent stem cells (iPSCs) in 2006, the bulk of research was carried out using transgenic animal models that offered little promise in their ability to translate well from benchtop to bedside, creating a bottleneck in the development of therapeutics. However, with iPSC, patient-specific cell cultures can be utilized to create models based on human cells. These human cells have the potential to avoid issues in translatability that have plagued animal models by providing researchers with a model that closely resembles and mimics the neurons found in humans. By using human iPSC technology, researchers can create more accurate models of AD ex vivo while also focusing on regenerative medicine using iPSC in vivo. The following review focuses on the current uses of iPSC and how they have the potential to regenerate damaged neuronal tissue, in the hopes that these technologies can assist in getting through the bottleneck of AD therapeutic research.


2021 ◽  
Vol 4 (s1) ◽  
Author(s):  
Salvatore Simmini ◽  
Allen C. Eaves ◽  
Sharon A. Louis ◽  
Wing Chang

Efficient and reproducible generation of tissue-specific organoids from Human Pluripotent Stem Cells (hPSCs) represents one of the key tools for reducing the use of animals in research. STEMCELL Technologies is committed to optimizing workflows that efficiently support the generation and maintenance of multiple types of organoid cultures derived from hPSCs.


2013 ◽  
Vol 25 (1) ◽  
pp. 319
Author(s):  
Stoyan Petkov

The isolation of embryonic stem cells (ESC) and embryonic germ cells (EGC) from early embryos is a major milestone in modern science and holds a great potential for human medicine. In 2007, Shinia Yamanaka and co-workers reprogrammed somatic cells to pluripotency by induced expression of pluripotency transcription factors. These so-called induced pluripotent stem cells (iPSC) are equivalent to ESC in terms of pluripotency and have the same potential for use in regenerative therapies. However, before the use of pluripotent cells or their derivatives in humans, potential therapies need to be tested in suitable animal models to ensure their safety. In this respect, the domestic pig is particularly suited for the testing of stem cell-based therapies intended for humans, since in general physiology and metabolism are similar in human and pigs. Since the isolation of the different types of pluripotent cells in human and mouse, there have been reports of derivation of ESC-like and EGC-like cell lines from porcine embryos. Despite the significant progress that has been reported in these studies, none of the described porcine cell lines have fulfilled all of the criteria for pluripotency, such as long-term maintenance and the ability to differentiate into all of the cells in the organism, including the germ line. This has prevented the use of these cells in the genetic engineering of livestock as well as their therapeutic application in animal models for human diseases. The derivation of the first porcine cell lines with iPSC characteristics (Ezashi et al. 2009 PNAS 27, 10 993–10 998) has provided a viable alternative to the ESC/EGC, and some major successes have been already achieved. The majority of the putative iPSC described in the literature have demonstrated pluripotent characteristics such as expression of various pluripotency markers and an ability to differentiate into the three primary germ layers in vivo by forming teratomas in immunodeficient mice. One group has reported the derivation of iPSC lines that have been capable to generate chimeras with germline contribution (West et al. 2011 Stem Cells 29, 1640–1643), which is the first fully confirmed report of successfully produced porcine germ line chimera to date. Additionally, the differentiation of putative iPSC into rod photoreceptors and their integration into the retinas of recipient pigs has been reported (Zhou et al. 2011 Stem Cells 29, 972–980). Despite these major achievements, some challenges remain to be overcome in order to make porcine iPSC more widely applicable in disease models and in the transgenic technology. Due to some variations in the morphological and molecular characteristics of the reported putative iPSC lines, it needs to be determined which markers are the hallmarks of truly pluripotent porcine iPSC. Second, it is still not clear which are the optimal culture conditions for derivation and long-term culture of these cells. Since the culture conditions used today have been proven ineffective to maintain pluripotency in porcine ESC and EGC, the question remains whether the continuous expression of the transgenes is an important factor in the long-term culture of iPSC. Finally, it needs to be determined whether putative porcine iPSC derived from cell types other than multipotent stem cells (such as mesenchymal stem cells used by West et al., 2011) possess full pluripotency, which should be demonstrated by germ line chimera production via blastocyst injection or tetraploid complementation.


Author(s):  
Khaled M. Hassan ◽  
Zahra H. Alqarni ◽  
Ali A. Almontashri ◽  
Ahmed M. Allubly ◽  
Khalid A. Alalmaee ◽  
...  

No treatment currently can be used in order to slow or even stop the progression of Parkinson's disease. Nowadays, researchers are already using stem cells to grow dopamine-producing nerve cells in the lab so that they can study the disease, especially in those cases where there is a known genetic cause for the condition. The development of the advanced cellular therapies and using induced pluripotent stem cells is making it possible to combat the progression of the disease without the resulting motor complications. It has been shown that the transplantation of many cell sources leads to reduce Parkinson’s disease symptoms in animal models.


Sign in / Sign up

Export Citation Format

Share Document