DOSE RATE IN A DEACTIVATED URANIUM MINE

2019 ◽  
Vol 7 (2B) ◽  
Author(s):  
Wagner De Souza Pereira ◽  
Alphonse Kelecom ◽  
Ademir Xavier Da Silva ◽  
José Marquez Lopes ◽  
Alessander Sá Do Carmo ◽  
...  

The Ore Treatment Unit is a deactivated uranium mine and milling situated in Caldas, MG, BR. Although disabled, there are still areas considered controlled and supervised from the radiological point of view. In these areas, it is necessary to keep an occupational monitoring program to ensure the workers' safety and to prevent the dispersion of radioactive material. For area monitoring, the dose rate, in µSv∙h-1, was measured with Geiger Müller (GM) area monitors or personal electronic monitors type GM and thermoluminescence dosimetry (TLD), in mSv∙month-1, along the years 2013 to 2016. For area monitoring, 577 samples were recorded; for personal dosimeters monitoring, 2,656; and for TLD monitoring type, 5,657. The area monitoring showed a mean dose rate of 6.42 µSv∙h-1 associated to a standard deviation of 48 µSv∙h-1 with a maximum recorded value of 685 µSv∙h-1. 96 % of the samples were below the derived limit per hour for workers (10 µSv∙h-1). For the personal electronic monitoring, the average of the data sampled was 15.86 µSv∙h-1, associated to a standard deviation of 61.74 µSv∙h-1. 80 % of the samples were below the derived limit and the maximum recorded was 1,220 µSv∙h-1. Finally, the TLD showed a mean of 0.01 mSv∙h-1 (TLD detection limit is 0.2 mSv∙month-1 equivalent to 0.28 µSv∙h-1), associated to a standard deviation of 0.08 mSv∙h-1. 98% of the registered values were below 0.2 mSv∙month-1 and less than 2 % of the measurements had values above the limit of detection. The samples show areas with low risk of external exposure, as can be seen by the TLD evaluation. Specific areas with greater risk of contamination have already been identified, as well as operations at higher risks. In these cases, the use of the individual electronic dosimeter is justified for a more effective monitoring. Radioprotection identified all risks and was able to extend individual electronic monitoring to all risk operations, even with the use of the TLD.

Author(s):  
D. G. Cepraga ◽  
G. Cambi ◽  
M. Frisoni ◽  
D. Ene

Code validation problems involve calculation of experiments and a comparison experiment-calculation. Experimental data and physical properties of these systems are used to determine the range of applicability of the validation. Once a sequence-code of calculations has been validated, it has to be underlined that the comparison experimental-calculated results involving “complex systems” or “complex experimental measures” permits also a bi-lateral cross-check between the calculation scheme and the experimental procedures. The results of the testing and the validation effort related to the collection of information and measured data and the comparison between code results with experimental data coming from a “low-level waste” repository are presented in this paper. The Baita-Bihor repository, sited into former disused uranium mine in Transylvania, has been considered as the source of experimental data. The study was developed through the following steps: a) collection and processing of measured data (radioactivity content and dose rate), from the cemented containers of the Baita-Bihor repository; b) decay gamma source calculation by the ANITA-2000 code package (the input data for the calculations are the measured isotope activities for each container); c) decay gamma transport calculation by the SCALENEA-1 shielding Sn sequence approach (Nitawl-Xsdrnpm-Xsdose modules of the Scale 4.4a code system, using the Vitenea-J library, based on FENDL/E-2 data) to obtain dose rates on the surfaces and at various points outside the containers; d) comparison experimental-calculated dose rates, taking into account also the measurement uncertainties. The new version of the ANITA-2000 activation code package used makes possible to assess the behaviour of irradiated materials independently from the knowledge of the irradiation scenario but using only data on the isotope radioactive material composition. Radioactive waste disposed of at Baita Bihor repository consists of worn reactor parts, resins and filters, packing materials, mop heads, protective clothing, temporary floor coverings and tools, the sources normally generated during the day-to-day operation of research reactors, the remediation-treatment stations and the medicine and biological activities. The low and intermediate wastes are prepared for shipping and disposal in the treatment stations by confining them in a cement matrix inside 220 litre metallic drums. Each container consists of an iron cladding filled by concrete Portland. Radioisotope composition and radioactivity distributions inside the drum are measured. The gamma spectroscopy has been used for. The calibration technique was based on the assumption of a uniform distribution of the source activity in the drum and also of a uniform sample matrix. Dose rate measurements are done continuously, circularly, in the central plan on the surface of the drum and 1 m from the surface, in the air. A “stuffing factor” model has been adopted to simulate, for the calculation, the spatial distribution of the gamma sources in the concrete region. In order to guarantee a complete Quality Assurance for codes and procedures, a simulation of the radioactive containers to evaluate the dose rates was done also by using the Monte Carlo MCNP-4C code. Its calculation results are in a very good agreement with those obtained by the Sn approach (discrepancies are around 2%, using the spherical approximation).


2018 ◽  
Vol 71 (12) ◽  
pp. 945
Author(s):  
Xin Fu ◽  
He Zhang ◽  
Jie Zhang ◽  
Shi-Tong Wen ◽  
Xing-Cheng Deng

A highly sensitive and label-free microbead-based ‘turn-on’ assay was developed for the detection of Hg2+ in urine based on the Hg2+-mediated formation of intermolecular split G-quadruplex–hemin DNAzymes. In the presence of Hg2+, T–T mismatches between the two partial cDNA strands were stabilized by a T–Hg2+–T base pair, and can cause the G-rich sequences of the two oligonucleotides to associate to form a split G-quadruplex which is able to bind hemin to form the catalytically active G-quadruplex–hemin DNAzyme. This microbead-based ‘turn-on’ process allows the detection of Hg2+ in urine samples at concentrations as low as 0.5 pM. The relative standard deviation and recovery are 1.2–3.9 and 98.7–103.2%, respectively. The remarkable sensitivity for Hg2+ is mainly attributed to the enhanced mass transport ability that is inherent in homogeneous microbead-based assays. Compared with previous developments of intermolecular split G-quardruplex–hemin DNAzymes for the homogeneous detection of Hg2+ (the limit of detection was 19nM), a signal enhancement of ~1000 times is obtained when such an assay is performed on the surface of microbeads.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Mohsen Keyvanfard ◽  
Khadijeh Alizad ◽  
Razieh Shakeri

A new kinetic spectrophotometric method is described for the determination of ultratrace amounts of sodium cromoglycate (SCG). The method based on catalytic action of SCG on the oxidation of amaranth with periodate in acidic and micellar medium. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the amaranth at 518 nm, for the first 4 min from initiation of the reaction. Calibration curve was linear in the range of 4.0−36.0 ng mL−1SCG. The limit of detection is 2.7 ng mL−1SCG. The relative standard deviation (RSD) for ten replicate analyses of 12, 20, and 28 ng mL−1SCG was 0.40%, 0.32%, and 0.53%, respectively. The proposed method was used for the determination of SCG in biological samples.


Author(s):  
Kevin J. Connolly ◽  
Elena Kalinina

It will be necessary in the future to transport spent nuclear fuel on a large-scale basis from nuclear power plant sites to interim storage and/or a repository. Shipments of radioactive material are required to comply with regulations limiting the dose rate to no more than 0.1 mSv (10 mrem) per hour at 2 meters from the sides of the vehicle transporting the package. Determining the resulting dose to the public will be necessary for a number of reasons (e.g., stakeholder concerns, environmental impact statements). In order to understand the dose consequence of such a transportation system, this paper describes a method for determining unit dose factors. These are defined as the dose to the public per unit distance traveled along a road, rail, or waterway from one shipment assuming unit values for the other route specific parameters. The actual dose to the public is calculated using unit dose factors, the dose rate due to the radiation field emanating from the package, and characteristics of the route itself. Route specific parameters include the speed of the conveyance, the population density, and characteristics of the environment surrounding the route; these are provided by a routing tool. Using these unit dose factors, in conjunction with a routing tool, it will be possible to quantify the collective dose to the public and understand the ramifications of choosing specific routes.


1993 ◽  
Vol 76 (6) ◽  
pp. 1220-1225 ◽  
Author(s):  
William J Trotter ◽  
Richard Dickerson

Abstract The U.S. Food and Drug Administration (FDA) has implemented a comprehensive monitoring program to determine the incidence and levels of organohalogen pesticide residues in milk representing most of the U.S. supply consumed in metropolitan areas. Residue findings for 806 composite milks collected through the Pasteurized Milk Program by the U.S. Environmental Protection Agency (EPA) in 1990-1991 are reported. Milk was collected on a monthly basis from 63 stations selected by EPA for radionuclide monitoring. These stations provide an estimated 80% of the milk delivered to U.S. population centers. At each station, milk from selected sources had been composited to represent the milk routinely consumed in its metropolitan area. Portions of these composites were forwarded to an FDA contract laboratory for pesticide residue analysis. Pesticide residues were found in 398 (49.4%) of 806 test samples, on the basis of a 0.0005 ppm limit of detection for each residue on a whole-product basis. A total of 455 occurrences of pesticide residues were found; p,p’-DDE and dieldrin accounted for 384 (84.4%) of these occurrences. The highest level was 0.019 ppm p,p’- DDE.


2012 ◽  
Vol 204-208 ◽  
pp. 4067-4070 ◽  
Author(s):  
Zhi Rong Zhou ◽  
Li Zhen Zhang

A simple kinetic spectrophotometric method was developed for the determination of trace amounts of Ru (III). The method is based on the reduction of spadns by sodium hypophosphite (NaH2PO2) in micellar media. The reaction was monitored spectrophotometrically by measuring the decrease in the absorbance of spadns at 515 nm with a fixed-time method. The decrease in the absorbance of spadns is proportional to the concentration of Ru (III) in the range 0.40–10.0 μg/L with a fixed time of 2.5–7.0 min from the initiation of the reaction. The limit of detection is 0.12 μg/L Ru (III). The relative standard deviation for the determination of 0.10 and 0.20 μg/25mL Ru (III) was 2.3 % and 2.0 %, respectively. The method was applied to the determination of Ru (III) in some ores and metallurgy products.


Sign in / Sign up

Export Citation Format

Share Document