scholarly journals CURCUMIN-BASED MULTIFUNCTIONAL NANOSYSTEMS

2021 ◽  
Vol 14 (5) ◽  
pp. 21-37
Author(s):  
M. I. Kaniuk ◽  

The use of multifunctional nanosystems in medicine and research is of contemporary interest. Aim. The purpose of the work was to summarize publications on the prospects of creating and using nanocontainers based on curcumin (Cur). Cur fluorescence in nanoparticles (NP) makes it possible to investigate the distribution of fluorescent and non-fluorescent components, significantly accelerating the study and implementation of drugs in practice. Particular attention is paid to the use of hydrophobic substances in NP, to penetrate into a living cell. Understanding the interaction of NP with living cells is extremely important when these particles are used to transport and deliver water-insoluble drugs to cells. Cur is one of the drugs with various and very promising pharmaceutical effects, it is poorly soluble in aqueous media, and the use of nanocarriers is an effective way to significantly increase its bioavailability. Cur has its own fluorescence, which enables to use it in multifunctional fluorescent nanosystems, for example, with Pluronic® micelles. The use of the fluorescence method makes it possible to trace the stages of interaction of Cur-loaded NP with cultured cells and their localization in cell organelles. With this approach, nanoscale dynamics of drug distribution and stability is observed over time. Conclusions. The main conclusion is that for unstable in the aquatic environment drugs such as Cur, it is necessary to use the most hydrophobic nanostructures without traces of water, which include the nuclei of Pluronic® micelles. This method makes it possible to use other poorly water-soluble drugs. A promising area of nanomedicine is the creation of complex bio-compatible nanomaterials based on several active drugs that reduce the toxicity of preparations to normal cells.

2003 ◽  
Vol 51 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Masako Kajihara ◽  
Toshihiko Sugie ◽  
Hiroo Maeda ◽  
Akihiko Sano ◽  
Keiji Fujioka ◽  
...  

Author(s):  
Shaveta Sharma ◽  
Divya Sharma ◽  
Jyoti Singh

In this paper we have surveyed about formulation and evaluation of Liquisolid formulations and its work in antidiabetics . Mostly poorly water soluble drugs are in research category despite of less dissolution rate and poor bioavailability. Solubility is a vital parameter to develop new formulation as industries faced serious issue regarding the poor aqueous solubility of the drugs. Various methods for solubility enhancement include modifications of the drug, involvement of co-solvents, complexation, salt formation, size reduction. A propitious technique to solve major challenges like solubility, dissolution rate and their bioavailability. This technique can be defined as the conversion of poorly soluble liquid medications into non-adherent, dry, compressible and free flowing powder mixtures with help of excipients. Many anti-diabetic drugs are belonging to BCS Class-II facing challenges like solubility and bioavailability.


2019 ◽  
Vol 9 (2) ◽  
pp. 583-590 ◽  
Author(s):  
Sandip R. Pawar ◽  
Shashikant D. Barhate

The solubility of a solute is the maximum quantity of solute that can dissolve in a certain quantity of solvent or quantity of solution at a specified temperature. Solubility is one of the important parameter to achieve desired concentration of drug in systemic circulation for pharmacological response to be shown. Solubility is essential for the therapeutic effectiveness of the drug, independent of the route of administration. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities as well as for the generic development. Poorly soluble drugs are often a challenging task for formulators in the industry Conventional  approaches  for  enhancement  of  solubility  have  limited  applicability,  especially when  the  drugs  are  poorly  soluble  simultaneously  in  aqueous  and  in  non-aqueous  media. Drug with poor water solubility cause slow dissolution rates, generally show erratic and incomplete absorption leading to low bioavailability when administered orally. Solubilization may be affected by cosolvent water  interaction, micellar solubilization, reduction in  particle  size,  inclusion  complexes,  solid  dispersion,  and  change  in  polymorph.  Some  new technologies  are  also  available  to  increase  the  solubility  like  micro emulsion,  self-emulsifying drug  delivery  system  and  supercritical  fluid  technology. This present review details about the different approaches used for the enhancement of the solubility of poorly water-soluble drugs include particle size reduction, nanonization, pH adjustment, solid dispersion, complexation, co‐solvency, hydrotropy etc. The purpose of this article is to describe the techniques of solubilization for the attainment of effective absorption and improved bioavailability. Keywords: Solubility, Solubility Enhancement, bioavailability, solid dispersion, Solid Dispersion, Solubilization.


2019 ◽  
Vol 9 (2) ◽  
pp. 574-582
Author(s):  
Stanekzai Azimullah ◽  
, Vikrant ◽  
CK Sudhakar ◽  
Pankaj Kumar ◽  
Akshay Patil ◽  
...  

Solubility is a vital factor for devloping drug delivery systems for poorly water soluble drugs. Several conventional approaches for enhancement of solubility have limited applicability, especially when the drugs are poorly water soluble. Nanosuspension technology can be used to enhance the solubilty, stability as well as the bioavailability of poorly water soluble drugs. Nanosuspensions are biphasic systems comperising of pure drug particles dispersed in an aqueous vehicle, stabilized by surfac active agents. Fabrication of nanosuspension is simple and more advantageous than other approaches. Techniques like high-pressure homogenization, wet milling, emulsification, solvent evaporation, bottom up technology and top down technology have been applicable in the fabrication of nanosuspensions. Nanosuspension delivery is possible by several routes, such as oral, pulmonary, parenteral and ocular routes. Nanosuspension not only solves solubility and bioavailability issue, but improve drug safety and efficacy. In this context, we reviewed the current techniques used to develop nanosuspensions and their recents studies application in drug delivery system. Keywords : Solubility, fabrication, Characterization, Applications, Nanosuspension.


Author(s):  
Sadhna Khatry ◽  
Neha Sood ◽  
Sandeep Arora

Preparation of an effective formulation of poorly water-soluble drugs is a key challenge in pharmaceutical technology. Dissolution rate and solubility are the rate- limiting steps for increasing the bioavailability of poorly water‐soluble drugs. Solid dispersion is an efficient technique for improving dissolution rate and subsequently, the bioavailability of poorly water‐soluble drugs. Surface sSolid dDispersion is a novel technique of solid dispersion for dispersing one or more active ingredients on a water insoluble carrier of high surface area in order to achieve increased dissolution rates and bioavailability of insoluble drugs. The Vvarious polymers used in this technique are Avicel, Crosspovidone, sSodium starch glycolate, pPregelatinized starch, Cab-o-sil, Ac-di-sol, KyronT-314, Primojel and pPotato sStarch. This article reviews the various methods of preparation and characterization of surface solid dispersion and compiles some of the drugs formulated as surface solid dispersions. Some of the practical aspects to be considered for preparing surface solid dispersion are selection of a suitable carrier and method of preparation of surface solid dispersion.


Author(s):  
Devika Tripathi ◽  
Nandini Chaudhary ◽  
Dinesh Kumar Sharma ◽  
Jagannath Sahoo

Ketoprofen used as a Non-steroidal anti-inflammatory drug selected as a poorly water-soluble model drug. Due to the poorly soluble nature of Ketoprofen liberate reduced bioavailability. Hydrotropic solubilization technique is a promising technique used to improve the solubility of water-insoluble drugs. In this investigation, 2M sodium salicylate has been employed in the titrimetric estimation of Ketoprofen and shows synergistic enhancement in the solubility of Ketoprofen by many folds as compared to the distilled water. It excluded the use of various organic solvent like ethanol; methanol and chloroform widely utilized in the titrimetric estimation of various poorly soluble drugs but due to the higher cost, volatility, toxicities lead to environmental pollution hence are the cons of it. The proposed method is new, simple, precise, and inexpensive. The results of the analysis have been validated statistically. The mean % recoveries were found to be close to 100, indicating the accuracy of the proposed method. Low values of standard deviation, % coefficient of variation, and standard error further proved the reproducibility and precision of the proposed method.


2020 ◽  
Vol 42 (4) ◽  
pp. 262-268
Author(s):  
L. Kobrina ◽  
◽  
S. Sinelnikov ◽  
V. Shtompel ◽  
D. Bandurina ◽  
...  

Recently, many technological methods of enhancing the solubility and dissolution characteristics of poorly water soluble drugs have been reported in the literature. Сyclodextrins are able to form water-soluble non-covalent inclusion complexes with many poorly soluble lipophilic drugs. The purpose of this study is to evaluate the possibility of interaction of the antifungal drug Bifonazole (BFZ) through complexation with carboxymethylated-β-cyclodextrin (КМ-β-CD). Based on the data obtained, we can conclude that the presence of KM-β-CD improves solubilization of BFZ more than 50 times. Кеуwords: cyclodextrins, solubility, poorly-water soluble drugs, bifonazole.


2007 ◽  
Vol 342-343 ◽  
pp. 421-424 ◽  
Author(s):  
Hyun Su Min ◽  
Hong Jae Lee ◽  
Sang Cheon Lee ◽  
Kyoung Hoon Kang ◽  
Jae Hwi Lee ◽  
...  

Hydrotropic block copolymers, consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrotropic polymer, poly(2-(4-(vinyl benzyloxy)-N,N-diethylnicotinamide)) [P(VBODENA)], block, were synthesized by atom transfer radical polymerization (ATRP) for aqueous solubilization of paclitaxel, a representative poorly water-soluble drug. These polymers showed an excellent solubilizing effect for paclitaxel in aqueous media in comparison with the corresponding hydrotropic agent and a control micelle (PEG-PLA) and such effect was significantly dependent on the polymer concentration and composition. Paclitaxel could be solubilized into polymer micelles in aqueous media without use of an organic solvent. Due to their promising properties such as micellar characteristics and hydrotropic solubilization, the hydrotropic polymer micelle system can be useful for formulation of paclitaxel and other poorly soluble drugs.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 54-59
Author(s):  
S. S Shelake ◽  
◽  
R. G Gaikwad ◽  
S Patil ◽  
F. I. Mevekari ◽  
...  

Crystalline state compounds are typically dissolution rate limited and dissolution rate is directly proportional to the solubility for BCS class II or class IV compounds. Solid dispersions are one of the most promising strategies to improve the oral bioavailability poorly water soluble drugs. The purpose of this study was to increase solubility of carvedilol by solid dispersion (SDs) technique with Poloxamer (PXM) 407 in aqueous media. The carvedilol- PXM 407 solid dispersion was prepared by solvent evaporation, kneading and melting method. It was characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), Fourier transformation infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM) and in vitro dissolution studies. The prepared solid dispersion were found to have higher dissolution rates as compared to intact carvedilol. During formulation of solid dispersion crystalline to amorphous transition has been observed.


2019 ◽  
Vol 9 (3) ◽  
pp. 184-197 ◽  
Author(s):  
Rosario Pignatello ◽  
Roberta Corsaro

: Soluplus® is a commercially available graft amphipathic copolymer consisting of polyvinyl caprolactam, polyvinyl acetate, and polyethyleneglycol (13% PEG 6000/57% vinyl caprolactam/30% vinyl acetate). Among the various applications of this solubilizer excipient, produced by BASF, such as the production of amorphous solid dispersions of insoluble drugs, Soluplus® has shown to be able to form nano-sized micelles in water or other aqueous solutions, characterized by a very small diameter and an exceptionally narrow size distribution. These formulations allow to improve the solubility and physical stability in aqueous media of poorly soluble drugs. This review summarizes the recent data from literature on the methods of production and characterization of drugloaded nanomicelles based on Soluplus®, highlighting the potential fields of therapeutic application.


Sign in / Sign up

Export Citation Format

Share Document