scholarly journals Modeling the dynamics of epidemics of infectious diseases under conditions of diffusion perturbations

Author(s):  
Andrii Bomba ◽  
Serhii Baranovsky

The paper proposes a modification of the SIRS epidemic model to take into account the influence of diffusion perturbations on the dynamics of the spread of an infectious disease. A singularly perturbed model problem with delay is reduced to a sequence of problems without delay. The sought functions are represented in asymptotic series as perturbations of solutions of the corresponding degenerate problems. The results of numerical experiments illustrating the influence of spatially distributed diffusion redistributions on the spread of an infectious disease are presented.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Yu Zhao ◽  
Jiangping Li ◽  
Xu Ma

It is well known that the pollution and environmental fluctuations may seriously affect the outbreak of infectious diseases (e.g., measles). Therefore, understanding the association between the periodic outbreak of an infectious disease and noise and pollution still needs further development. Here we consider a stochastic susceptible-infective (SI) epidemic model in a polluted environment, which incorporates both environmental fluctuations as well as pollution. First, the existence of the global positive solution is discussed. Thereafter, the sufficient conditions for the nontrivial stochastic periodic solution and the boundary periodic solution of disease extinction are derived, respectively. Numerical simulation is also conducted in order to support the theoretical results. Our study shows that (i) large intensity noise may help the control of periodic outbreak of infectious disease; (ii) pollution may significantly affect the peak level of infective population and cause adverse health effects on the exposed population. These results can help increase the understanding of periodic outbreak patterns of infectious diseases.


2021 ◽  
Vol 3 ◽  
pp. 115-129
Author(s):  
Sergey Baranovsky ◽  
◽  
Andrey Bomba ◽  
Sergey Lyashko ◽  
◽  
...  

To study the patterns of response of the immune system to viruses detected in the body, a very diverse range of models has been developed. The simplest infectious disease model, which describes the most general mechanisms of immune protection, built on the assumption that the environment of the «organism» is homogeneous, in which all components of the process are instantly mixed by Marchuk is known. The infectious disease mathematical model by Marchuk for generalization of diffusion perturbations and various concentrated influences is generalized. The corresponding singularly perturbed model problem with delay is reduced to a sequence of problems without delay, for which the corresponding asymptotic developments of solutions are obtained. The results of numerical experiments, which illustrate the influence of spatially distributed diffusion «redistributions» on the nature of the viral disease in the presence of concentrated sources of antigens and donor antibodies are presented. A model decrease in the maximum level of antigens in the infection epicenter due to their diffusion «erosion» in the process of infectious disease development has been demonstrated. It is emphasized that even if the initial concentration or intensity of the pulsed viral source in a certain part of the infection will exceed some critical value (immunological barrier) due to diffusion «redistribution» for a short period of time, the supercritical concentration of viral agents may decrease to lower than the critical level and further neutralization of antigens can be provided by the available level of antibodies and a more economical procedure of injection solution with donor antibodies. That is, within this model, the «severity» of the viral disease in such cases can be reduced more rationally, at lower cost.


Author(s):  
Serhij Baranovskii ◽  
Andrij Bomba ◽  
Oksana Pryshchepa

The article proposes a modification of the mathematical model of the immunotherapy influence on the immune response dynamics taking into account small-scale diffusion perturbations. The solution of the corresponding singularly perturbed model problem with time-delay is reduced to a sequence of solutions without time-delay, for that representations of the required functions in the form of asymptotic series as disturbances of solutions of the corresponding degenerate problems are constructed. We present the results of numerical modeling that illustrate the influence of diffusion redistribution of active factors on the infectious disease dynamics in the conditions of immunotherapy. The decrease in the level of the maximum concentration of antigens in the locus of infection as a result of their diffusion redistribution is illustrated.


Author(s):  
A. Ya. Bomba ◽  
S. V. Baranovsky

This paper proposes modification of the simplest model of the infectious disease in the conditions of pharmacotherapy taking into account influence of small-scale spatial distributed diffusion influences. The singular disturbed model problem with time-delay is reduced to a sequence of problems without time-delay for which the corresponding representations of the asymptotic expansions of solutions are constructed. We present the results of numerical experiments that characterize the influence of spatial distributed diffusion «redistributions» of infectious disease factors on the development of the process on condition of pharmacotherapy. The decrease in the maximum level of concentration of pathogenic antigens in the locus of infection due to their diffusion «redistribution» is illustrated.


2009 ◽  
Vol 22 (2) ◽  
pp. 370-385 ◽  
Author(s):  
Jenefer M. Blackwell ◽  
Sarra E. Jamieson ◽  
David Burgner

SUMMARY Following their discovery in the early 1970s, classical human leukocyte antigen (HLA) loci have been the prototypical candidates for genetic susceptibility to infectious disease. Indeed, the original hypothesis for the extreme variability observed at HLA loci (H-2 in mice) was the major selective pressure from infectious diseases. Now that both the human genome and the molecular basis of innate and acquired immunity are understood in greater detail, do the classical HLA loci still stand out as major genes that determine susceptibility to infectious disease? This review looks afresh at the evidence supporting a role for classical HLA loci in susceptibility to infectious disease, examines the limitations of data reported to date, and discusses current advances in methodology and technology that will potentially lead to greater understanding of their role in infectious diseases in the future.


Author(s):  
Junna Hu ◽  
Buyu Wen ◽  
Ting Zeng ◽  
Zhidong Teng

Abstract In this paper, a stochastic susceptible-infective-recovered (SIRS) epidemic model with vaccination, nonlinear incidence and white noises under regime switching and Lévy jumps is investigated. A new threshold value is determined. Some basic assumptions with regard to nonlinear incidence, white noises, Markov switching and Lévy jumps are introduced. The threshold conditions to guarantee the extinction and permanence in the mean of the disease with probability one and the existence of unique ergodic stationary distribution for the model are established. Some new techniques to deal with the Markov switching, Lévy jumps, nonlinear incidence and vaccination for the stochastic epidemic models are proposed. Lastly, the numerical simulations not only illustrate the main results given in this paper, but also suggest some interesting open problems.


2021 ◽  
pp. 074873042098732
Author(s):  
N. Kronfeld-Schor ◽  
T. J. Stevenson ◽  
S. Nickbakhsh ◽  
E. S. Schernhammer ◽  
X. C. Dopico ◽  
...  

Not 1 year has passed since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). Since its emergence, great uncertainty has surrounded the potential for COVID-19 to establish as a seasonally recurrent disease. Many infectious diseases, including endemic human coronaviruses, vary across the year. They show a wide range of seasonal waveforms, timing (phase), and amplitudes, which differ depending on the geographical region. Drivers of such patterns are predominantly studied from an epidemiological perspective with a focus on weather and behavior, but complementary insights emerge from physiological studies of seasonality in animals, including humans. Thus, we take a multidisciplinary approach to integrate knowledge from usually distinct fields. First, we review epidemiological evidence of environmental and behavioral drivers of infectious disease seasonality. Subsequently, we take a chronobiological perspective and discuss within-host changes that may affect susceptibility, morbidity, and mortality from infectious diseases. Based on photoperiodic, circannual, and comparative human data, we not only identify promising future avenues but also highlight the need for further studies in animal models. Our preliminary assessment is that host immune seasonality warrants evaluation alongside weather and human behavior as factors that may contribute to COVID-19 seasonality, and that the relative importance of these drivers requires further investigation. A major challenge to predicting seasonality of infectious diseases are rapid, human-induced changes in the hitherto predictable seasonality of our planet, whose influence we review in a final outlook section. We conclude that a proactive multidisciplinary approach is warranted to predict, mitigate, and prevent seasonal infectious diseases in our complex, changing human-earth system.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hee-Gyeong Yi ◽  
Hyeonji Kim ◽  
Junyoung Kwon ◽  
Yeong-Jin Choi ◽  
Jinah Jang ◽  
...  

AbstractRapid development of vaccines and therapeutics is necessary to tackle the emergence of new pathogens and infectious diseases. To speed up the drug discovery process, the conventional development pipeline can be retooled by introducing advanced in vitro models as alternatives to conventional infectious disease models and by employing advanced technology for the production of medicine and cell/drug delivery systems. In this regard, layer-by-layer construction with a 3D bioprinting system or other technologies provides a beneficial method for developing highly biomimetic and reliable in vitro models for infectious disease research. In addition, the high flexibility and versatility of 3D bioprinting offer advantages in the effective production of vaccines, therapeutics, and relevant delivery systems. Herein, we discuss the potential of 3D bioprinting technologies for the control of infectious diseases. We also suggest that 3D bioprinting in infectious disease research and drug development could be a significant platform technology for the rapid and automated production of tissue/organ models and medicines in the near future.


Sign in / Sign up

Export Citation Format

Share Document