SIGNIFICANCE OF DX-CENTERS FOR ACOUSTIC INDUCED RECONSTRUCTION PROCESSES OF DEFECTS IN GaN/AlGaN

2021 ◽  
Vol 56 ◽  
pp. 61-70
Author(s):  
Ya. M. Olikh ◽  

The experimental results of amplitude effects are compared (from an ultrasonic wave deformation amplitude – a tension τUS) for electron concentration and changes of the lattice parameter on the same sample GaN/Al0.2Ga0.8N/GaN/AlN. It has been experimentally established that at ultrasonic loading (frequency 5–10 MHz, amplitude – towards 2·104 W/m2) there is a nonlinear increase in the effective electron concentration and an increase in the lattice parameter; at the same time, the mobility of electrons decreases and μН(τUS) ~ |τUS|. The energy parameters of the acoustic activation charge carriers process are calculated from the approximation of experimental amplitude changes – Еа ≈ 50 meV and γn(300 K) ≈ 2,5·10-27 m3. The amplitude dependences (increase) of the relative lattice parameter change (ΔС/С) from the tension τUS have been investigated experimentally at different frequencies. The energy of DX-center transition UDX ≈ 108 meV and the activation volume of this transition γDX ≈ 6,6·10-27 m3 are calculated from the approximation of the experimental amplitude changes. The revealed correlation of the magnitude of acoustic induced effects in different experiments allows to build a quantitative energy model of the acoustic action process based on the properties of metastable DX centers. It is shown that the acoustic induced process occurs due to the dimensional displacement of the DX-center atom (a background impurity of silicon atoms) from the non-central position to the centrally symmetric one; herewith DX-center is ionized, one goes into the d0-state. It is believed that the changes are most likely to occur near penetrating dislocations in the barrier layer Al0.2Ga0.8N – acoustic modulated oscillations of the distance between the possible positions of the donor atom lead to a decrease in the barrier to the displacement of the defect.

1989 ◽  
Vol 163 ◽  
Author(s):  
Harold P. Hjalmarson ◽  
S. R. Kurtz ◽  
T. M. Brennan

AbstractThe DX-center model is widely used to explain data for the persistent photoconductivity (PPC) effect. An analysis of the DX-center model suggests a new experiment to test its correctness. In this experiment, photons near the threshold energy of the photoionization cross-section for the DX-center induce transitions from the partially occupied conduction band to empty DX-centers. This mechanism, which we call photocapture, competes with the usual photoionization which empties the DX-centers. The photocapture cross-section is estimated and an experimental attempt is made to detect photocapture. The significance of the null result is discussed.


1992 ◽  
Vol 262 ◽  
Author(s):  
Subhasis Ghosh ◽  
Vikram Kumar

ABSTRACTPhoto-Deep Level Transient Spectroscopy with 1.38 eV light reveals a new level with thermal activation energy 0.2 eV of DX centers in silicon doped Alx Ga1-xAs (x = 0.26) for the first time. The observation of this level directly proves the negative-U properties of DX centers and the existence of thermodynamically metastable state DX.


1995 ◽  
Vol 378 ◽  
Author(s):  
P. Becla ◽  
A. G. Witt ◽  
J. Lagowski ◽  
W. Walukiewicz

AbstractA large photochromic effect has been observed in bulk AlSb crystals doped with Se. Illumination with the light of energy higher than 1 eV leads to an increase of the absorption coefficient in the spectral range 0.1 eV to 1.6 eV. The enhanced absorption is persistent at the temperatures below about 100 K. The effect is a manifestation of a DX-like bistability of Se donors. The illumination transfers the electrons from the DX center to a metastable hydrogenic level. The increased absorption with peaks around 0.2 eV and 0.5 eV is due to photoionization from the donor level to X1 and X3 minima of the conduction band


1999 ◽  
Vol 573 ◽  
Author(s):  
Hüseyin Sari ◽  
Harry H. wieder

ABSTRACTThe presence of DX centers in InxAl1−xAs, primarily in the indirect portion of the InxAl1−xAs bandgap, has been determined using modulation doped InxAl1−xAs/InyGa1−yAs heterostructures by means of persistent photoconductivity (PPC) and galvanomagnetic measurements. From the cooling bias experiment, the PPC, and self consistent Poisson and Schrddinger simulations the ratio of the ionized shallow donors to the DX centers is obtained. Using this ratio in the grand canonical ensemble (GCE) the energy level of DX centers is determined. It is found that the DX energy level merges with the conduction band at x ≅ 0.42 and is resonant with the conduction band in higher indium concentration.


1987 ◽  
Vol 104 ◽  
Author(s):  
J. Kaniewski ◽  
M. Kaniewska

ABSTRACTA capacitance study of GaAs1−xPx : Te. x > 0.2, obtained by vapor phase epitaxy, has revealed two DX centers, characterized by thermal activation energies ΔEA = 0.18 eV and ΔEB = 0.39 eV. and photoionization energies 0.6 eV and 1.1 eV, respectively. Both traps show strong non-exponential behavior in thermal emission and capture processes. It is shown that correct parameter values for DX centers can be determined from measurements of the transition region width. This method, which allows us to circumvent alloy effects, has been used to study DX center parameters as a function of the phosphorus content. It is demonstrated that the level B is linked to the X minimum, and that the barrier height for electron capture at this trap, with respect to the indirect minimum, is independent of alloy composition.


1987 ◽  
Vol 104 ◽  
Author(s):  
John W. Farmer ◽  
Harold P. Hjalmarson ◽  
G. A. Samara

ABSTRACTPressure dependent Deep Level Transient Spectroscopy (DLTS) experiments are used to measure the properties of the deep donors (DX-centers) responsible for the persistent photoconductivity effect in Si-doped AlGaAs. The sample dependence of the DLTS spectra shows evidence for a defect complex involved in the DX-center.


1990 ◽  
Vol 184 ◽  
Author(s):  
P. M. Mooney

ABSTRACTIn this paper the effects of DX levels on the properties of AlxGa1−xAs and certain heterojunction device structures are summarized. Studies of alloy effects, variations of the local atomic environment near the donor, are reviewed and microscopic models of the DX center are discussed in terms of these and other recent experimental results.


1993 ◽  
Vol 300 ◽  
Author(s):  
S. Anand ◽  
S. Subramanian ◽  
B. M. Arora ◽  
Y. C. Lu ◽  
E. Bauser

ABSTRACTIn this paper, we present results of our investigations on some aspects of the DX centers. It is shown from the low temperature Hall mobility measurements that the charge state of the DX center is neutral supporting the positive U model for the DX center. Hall and DLTS measurements on Al-rich Al0.8Ga0.2As:Te sample show a reversal in the ordering of the energies of the hydrogenic and deep states of the Te donor, with the DX state lying higher than the X valley related effective mass state. Thermal emission properties of the pressure induced DX states of Ge and Se donors in neutron transmutation doped (NTD) GaAs are discussed.


Sign in / Sign up

Export Citation Format

Share Document